Chromatic selectivity has been studied extensively in various visual areas at different stages of visual processing in the macaque brain. In these studies, color stimuli defined in the Derrington-Krauskopf-Lennie (DKL) color space with a limited range of cone contrast were typically used in early stages, whereas those defined in the Commission Internationale de l'Eclairage (CIE) color space, based on human psychophysical measurements across the gamut of the display, were often used in higher visual areas. To understand how the color information is processed along the visual pathway, it is necessary to compare color selectivity obtained in different areas on a common color space.
View Article and Find Full Text PDFAltered sensory experience in early life often leads to remarkable adaptations so that humans and animals can make the best use of the available information in a particular environment. By restricting visual input to a limited range of orientations in young animals, this investigation shows that stimulus selectivity, e.g.
View Article and Find Full Text PDFNeural processing of 2D visual motion has been studied extensively, but relatively little is known about how visual cortical neurons represent visual motion trajectories that include a component toward or away from the observer (motion in depth). Psychophysical studies have demonstrated that humans perceive motion in depth based on both changes in binocular disparity over time (CD cue) and interocular velocity differences (IOVD cue). However, evidence for neurons that represent motion in depth has been limited, especially in primates, and it is unknown whether such neurons make use of CD or IOVD cues.
View Article and Find Full Text PDFNeurons in the early visual cortex are generally highly sensitive to stimuli presented to the two eyes. However, the majority of studies on spatial and temporal aspects of neural responses were based on monocular measurements. To study neurons under more natural, i.
View Article and Find Full Text PDFNeural coding of the three-dimensional (3-D) orientation of planar surface patches may be an important intermediate step in constructing representations of complex 3-D surface structure. Spatial gradients of binocular disparity, image velocity, and texture provide potent cues to the 3-D orientation (tilt and slant) of planar surfaces. Previous studies have described neurons in both dorsal and ventral stream areas that are selective for surface tilt based on one or more of these gradient cues.
View Article and Find Full Text PDFHow are surface orientations of three-dimensional objects and scenes represented in the visual system? We have examined an idea that these surface orientations are encoded by neurons with a variety of tilts in their binocular receptive field (RF) structure. To examine whether neurons in the early visual areas are capable of encoding surface orientations, we have recorded from single neurons extracellularly in areas 17 and 18 of the cat using standard electrophysiological methods. Binocular RF structures are obtained using a binocular version of the reverse correlation technique.
View Article and Find Full Text PDF