A high-flux sub-micrometre focusing system was constructed using multilayer focusing mirrors in Kirkpatrick-Baez geometry for 100 keV X-rays. The focusing mirror system had a wide bandwidth of 5% and a high peak reflectivity of 74%. Performance was evaluated at the undulator beamline BL05XU of SPring-8, which produced an intense 100 keV X-ray beam with a bandwidth of 1%.
View Article and Find Full Text PDFUnderstanding the pressure-induced structural changes in liquids and amorphous materials is fundamental in a wide range of scientific fields. However, experimental investigation of the structure of liquid and amorphous material under in situ high-pressure conditions is still limited due to the experimental difficulties. In particular, the range of the momentum transfer (Q) in the structure factor [S(Q)] measurement under high-pressure conditions has been limited at relatively low Q, which makes it difficult to conduct detailed structural analysis of liquid and amorphous material.
View Article and Find Full Text PDFWhile polymorphism is prevalent in crystalline solids, polyamorphism draws increasing interest in various types of amorphous solids. Recent studies suggested that supercooling of liquid phase-change materials (PCMs) induces Peierls-like distortions in their local structures, underlying their liquid-liquid transitions before vitrification. However, the mechanism of how the vitrified phases undergo a possible polyamorphic transition remains elusive.
View Article and Find Full Text PDFJ Synchrotron Radiat
September 2023
Chlamydomonas reinhardtii is a well-established microalgal model species with a shorter doubling time, which is a promising natural source for the efficient production of high-value carotenoids. In the microalgal carotenoid biosynthetic pathway, lycopene is converted either into β-carotene by lycopene β-cyclase or into α-carotene by lycopene ε-cyclase (LCYE) and lycopene β-cyclase. In this study, we overexpressed the LCYE gene in C.
View Article and Find Full Text PDFCross-linking of antigen-specific IgE bound to the high-affinity IgE receptor (FcεRI) on the surface of mast cells with multivalent antigens results in the release of mediators and development of type 2 inflammation. FcεRI expression and IgE synthesis are, therefore, critical for type 2 inflammatory disease development. In an attempt to clarify the relationship between eosinophilic chronic rhinosinusitis (ECRS) and mast cell infiltration, we analyzed mast cell infiltration at lesion sites and determined its clinical significance.
View Article and Find Full Text PDFBackground: Type 2 chronic rhinosinusitis (CRS), especially eosinophilic CRS (ECRS), is an intractable upper airway inflammatory disease. Establishment of serum biomarkers reflecting the pathophysiology of CRS is desirable in a clinical setting. As IgG4 production is regulated by type 2 cytokines, we sought to determine whether serum IgG4 levels can be used as a biomarker for CRS.
View Article and Find Full Text PDFIntense sub-micrometre focusing of a soft X-ray free-electron laser (FEL) was achieved by using an ellipsoidal mirror with a high numerical aperture. A hybrid focusing system in combination with a Kirkpatrick-Baez mirror was applied for compensation of a small spatial acceptance of the ellipsoidal mirror. With this system, the soft X-ray FEL pulses were focused down to 480 nm × 680 nm with an extremely high intensity of 8.
View Article and Find Full Text PDFHere a direct comparison is made between various X-ray wavefront sensing methods with application to optics alignment and focus characterization at X-ray free-electron lasers (XFELs). Focus optimization at XFEL beamlines presents unique challenges due to high peak powers as well as beam pointing instability, meaning that techniques capable of single-shot measurement and that probe the wavefront at an out-of-focus location are desirable. The techniques chosen for the comparison include single-phase-grating Talbot interferometry (shearing interferometry), dual-grating Talbot interferometry (moiré deflectometry) and speckle tracking.
View Article and Find Full Text PDFThe surface contamination of reflective X-ray optics has long been a serious problem that degrades beam quality. We evaluated the total organic content at the surface by gas chromatography to clarify the source of contamination. We found that various materials that can become contamination sources are used around the optical elements.
View Article and Find Full Text PDFIn this report, we analyse X-ray induced damage of BC-coated bilayer materials under various irradiation geometries, following the conditions of our experiment performed at the free-electron-laser facility SACLA. We start with the discussion of structural damage in solids and damage threshold doses for the experimental system components: BC, SiC, Mo and Si. Later, we analyze the irradiation of the experimentally tested coated bilayer systems under two different incidence conditions of a linearly polarized X-ray pulse: (i) grazing incidence, and (ii) normal incidence, in order to compare quantitatively the effect of the pulse incidence on the radiation tolerance of both systems.
View Article and Find Full Text PDFBackground: IgG4 production is regulated by type 2 (IL-4 and IL-13) and regulatory (IL-10) cytokines involved in the pathophysiology of chronic rhinosinusitis (CRS). We sought to determine the pathophysiological characteristics of IgG4-positive cells in sinonasal tissues in CRS, especially eosinophilic CRS (ECRS).
Methods: IgG4-positive cells in uncinate tissues (UT) and nasal polyps (NP) were examined by immunohistochemistry.
Cutting-edge hard X-ray microscopy strongly depends on sophisticated focusing optics and ultrabright X-ray sources at synchrotron-radiation and X-ray free-electron laser (XFEL) facilities. These facilities typically provide two-dimensional nanofocusing X-ray beams by combining one-dimensional focusing mirrors. However, single-reflecting two-dimensional focusing mirrors with an ellipsoidal surface, which are well-known to possess high efficiency, have limited microfocusing applications.
View Article and Find Full Text PDFBackground: IL-22 is an IL-10-family cytokine that regulates chronic inflammation. We investigated the role of IL-22 and its receptor, IL-22R1, in the pathophysiology of chronic rhinosinusitis with nasal polyps (CRSwNP).
Methods: IL-22 and IL-22R1 protein and mRNA expression in NP and in uncinate tissues (UT) from CRS and non-CRS patients was examined using immunohistochemistry and real-time PCR, respectively.