Publications by authors named "Takahisa Harayama"

By numerical simulations and experiments of fully chaotic billiard lasers, we show that single-mode lasing states are stable, whereas multi-mode lasing states are unstable when the size of the billiard is much larger than the wavelength and the external pumping power is sufficiently large. On the other hand, for integrable billiard lasers, it is shown that multi-mode lasing states are stable, whereas single-mode lasing states are unstable. These phenomena arise from the combination of two different nonlinear effects of mode-interaction due to the active lasing medium and deformation of the billiard shape.

View Article and Find Full Text PDF

Synchronization properties of chaotic dynamics in two mutually coupled semiconductor lasers with optical feedback embedded in a photonic integrated circuit are investigated from the point of view of their dynamical content. A phenomenon in which the two lasers can show qualitatively different synchronization properties according to the frequency range of investigation and their nonlinear dynamics is identified and termed dynamics-dependent synchronization. In-phase synchronization is observed for original signals and antiphase synchronization is observed for low-pass filtered signals in the case where one of the lasers shows chaotic oscillations while the other laser exhibits low-frequency fluctuations dynamics.

View Article and Find Full Text PDF

Random number generators are essential for applications in information security and numerical simulations. Most optical-chaos-based random number generators produce random bit sequences by offline post-processing with large optical components. We demonstrate a real-time hardware implementation of a fast physical random number generator with a photonic integrated circuit and a field programmable gate array (FPGA) electronic board.

View Article and Find Full Text PDF

We demonstrate a random bit streaming system that uses a chaotic laser as its physical entropy source. By performing real-time bit manipulation for bias reduction, we were able to provide the memory of a personal computer with a constant supply of ready-to-use physical random bits at a throughput of up to 4 Gbps. We pay special attention to the end-to-end entropy source model describing how the entropy from physical sources is converted into bit entropy.

View Article and Find Full Text PDF

We experimentally investigate an intermittent route to chaos in a photonic integrated circuit consisting of a semiconductor laser with time-delayed optical feedback from a short external cavity. The transition from a period-doubling dynamics to a fully-developed chaos reveals a stage intermittently exhibiting these two dynamics. We unveil the bifurcation mechanism underlying this route to chaos by using the Lang-Kobayashi model and demonstrate that the process is based on a phenomenon of attractor expansion initiated by a particular distribution of the local Lyapunov exponents.

View Article and Find Full Text PDF

We report an experimental investigation on the spectra of fully chaotic and nonchaotic microcavity lasers under continuous-wave operating conditions. It is found that fully chaotic microcavity lasers operate in single mode, whereas nonchaotic microcavity lasers operate in multimode. The suppression of multimode lasing for fully chaotic microcavity lasers is explained by large spatial overlaps of the resonance wave functions that spread throughout the two-dimensional cavity due to the ergodicity of chaotic ray orbits.

View Article and Find Full Text PDF

We report experimentally on the bifurcation cascade leading to the appearance of self-pulsation in a photonic integrated circuit in which a laser diode is subjected to delayed optical feedback. We study the evolution of the self-pulsing frequency with the increase of both the feedback strength and the injection current. Experimental observations show good qualitative accordance with numerical results carried out with the Lang-Kobayashi rate equation model.

View Article and Find Full Text PDF

Based on the reformulation of the boundary integral equations recently derived by Creagh, Hamdin, and Tanner [J. Phys. A: Math.

View Article and Find Full Text PDF

We fabricated and tested an unstrained GaAs single-quantum-well microlaser which has a two-dimensional cavity shape known as the Penrose unilluminable room. The cavity exhibits quasi-one-dimensional modes, namely axial, diamond-shaped, and V-shaped modes. In contrast to previous observations of TE-polarized emission in GaAs microlasers, we observed TM-polarized emission.

View Article and Find Full Text PDF

We generate random bit sequences from chaotic temporal waveforms by using photonic integrated circuits (PICs) with different external cavity lengths. We investigate the condition for generating random bits at different sampling rates of single-bit generation method with the PICs. We succeed in generating certified random bit sequences by using the PIC with 3, 4, 5, or 10-mm-long external cavity, whereas random bits cannot pass all the statistical tests of randomness when the PIC with 1 or 2 mm-long external cavity is used.

View Article and Find Full Text PDF

For a two-dimensional quasi-stadium laser diode, we demonstrate stable excitation of the lowest-order transverse ring modes by optimally designing the confocal end mirrors of the laser cavity based on extended Fox-Li mode calculations. We observe kink-free light output versus injection current characteristics and highly directional single-peak emissions corresponding to the diamond-shaped trajectory in the cavity. These results provide convincing evidence for selective excitation of the lowest-order transverse modes.

View Article and Find Full Text PDF

We present an experimental method for directly observing the amplification of microscopic intrinsic noise in a high-dimensional chaotic laser system, a laser with delayed feedback. In the experiment, the chaotic laser system is repeatedly switched from a stable lasing state to a chaotic state, and the time evolution of an ensemble of chaotic states starting from the same initial state is measured. It is experimentally demonstrated that intrinsic noises amplified by the chaotic dynamics are transformed into macroscopic fluctuating signals, and the probability density of the output light intensity actually converges to a natural invariant probability density in a strongly chaotic regime.

View Article and Find Full Text PDF

The Galton board is a classic example of the appearance of randomness and stochasticity. In the dynamical model of the Galton board, the macroscopic motion is governed by deterministic equations of motion, and predictability depends on uncertainty in the initial conditions and its evolution by the dynamics. In this sense the Galton board is similar to coin tossing.

View Article and Find Full Text PDF

We theoretically show that completely stochastic fast physical random bit generation at a rate of more than one gigabit per second can be realized by using lasers with optical delayed feedback which creates high-dimensional chaos of laser light outputs. The theory is based on the mixing property of chaos, which transduces microscopic quantum noise of spontaneous emission in lasers into random transitions between discrete macroscopic states.

View Article and Find Full Text PDF

We investigated the lasing modes of quasi-stadium laser diodes that have confocal cavity geometries, with stripe electrode contacts formed either along the cavity axis or a diamond-shaped trajectory. It was clearly demonstrated that by using narrow electrode contact patterns of 2 μm width, the lowest-order axial and ring modes were excited selectively. On the other hand, the second-lowest-order axial and ring modes were excited by using broad electrode patterns of 14 μm width.

View Article and Find Full Text PDF

We propose a secure key distribution scheme based on correlated physical randomness in remote optical scramblers driven by common random light. The security of the scheme depends on the practical difficulty of completely observing random optical phenomena. We describe a particular realization using the synchronization of semiconductor lasers injected with common light of randomly varying phase.

View Article and Find Full Text PDF

We analyze the time for growth of bit entropy when generating nondeterministic bits using a chaotic semiconductor laser model. The mechanism for generating nondeterministic bits is modeled as a 1-bit sampling of the intensity of light output. Microscopic noise results in an ensemble of trajectories whose bit entropy increases with time.

View Article and Find Full Text PDF

We experimentally show that a random optical pulse train can be generated by modulating a bistable semiconductor ring laser. When the ring laser is switched from the monostable to the bistable regime, it randomly selects one of two different stable unidirectional lasing modes, clockwise or counterclockwise modes. Non-deterministic random pulse sequences are generated by driving the switch parameter, the injection current, with a periodic pulse signal.

View Article and Find Full Text PDF

We report a novel chaos semiconductor laser chip in which a distributed feedback (DFB) laser, two semiconductor optical amplifiers (SOAs) and a photodiode (PD) are monolithically integrated with a passive ring waveguide. The ring-type structure with the two separate SOAs achieves stronger delayed optical feedback compared to previous chaos laser chips which use linear waveguide and facet-reflection. The integrated PD allows efficient detection of the optical signal with low optical loss.

View Article and Find Full Text PDF

We study the output from the modes described by the superposition of Gaussian beams confined in the quasi-stadium microcavities. We experimentally observe the deviation from Snell's law in the output when the incident angle of the Gaussian beam at the cavity interface is near the critical angle for total internal reflection, providing direct experimental evidence on the Fresnel filtering. The theory of the Fresnel filtering for a planar interface qualitatively reproduces experimental data, and a discussion is given on small deviation between the measured data and the theory.

View Article and Find Full Text PDF

We study the effect of dynamical tunneling on emission from ray-chaotic microcavities by introducing a suitably designed deformed disk cavity. We focus on its high quality factor modes strongly localized along a stable periodic ray orbit confined by total internal reflection. It is shown that dominant emission originates from the tunneling from the periodic ray orbit to chaotic ones; the latter eventually escape from the cavity refractively, resulting in directional emission that is unexpected from the geometry of the periodic orbit, but fully explained by unstable manifolds of chaotic ray dynamics.

View Article and Find Full Text PDF

We experimentally demonstrate random bit generation using multi-bit samples of bandwidth-enhanced chaos in semiconductor lasers. Chaotic fluctuation of laser output is generated in a semiconductor laser with optical feedback and the chaotic output is injected into a second semiconductor laser to obtain a chaotic intensity signal with bandwidth enhanced up to 16 GHz. The chaotic signal is converted to an 8-bit digital signal by sampling with a digital oscilloscope at 12.

View Article and Find Full Text PDF

We study spectral and far-field characteristics of lasing emission from stadium-shaped semiconductor (InGaAsP) microlasers. We demonstrate that the correspondence between a lasing far-field emission pattern and the result of a ray simulation becomes better as the number of lasing modes increases. This phenomenon is reproduced in the wave calculation of the cavity modes.

View Article and Find Full Text PDF

We propose a novel method for extracting light beams from diamond-shaped total-internal reflection modes in two-dimensional microcavity laser diodes by the use of intracavity air gaps. By fabricating such a laser diode, we experimentally demonstrate that the direction and longitudinal mode spacing of the output beams are in good accordance with theoretical calculations.

View Article and Find Full Text PDF

We obtained high-quality lowest-loss-mode lasing in quasi-stadium laser diodes having unstable resonators that consisted of two curved end mirrors and two straight sidewall mirrors. The laser diodes were fabricated by applying a reactive ion etching technique to a metal-organic chemical-vapor deposition-grown graded-index separate-confinement heterostructure single-quantum-well GaAs/AlGaAs structure. The electrode contact area of the laser diodes was formed along unstable periodic orbits, along which the optical beams are localized.

View Article and Find Full Text PDF