Ventricular tachycardia (VT) is a severe arrhythmia commonly treated with implantable cardioverter defibrillators, antiarrhythmic drugs and catheter ablation (CA). Although CA is effective in reducing recurrent VT, its impact on survival remains uncertain, especially in patients with extensive scarring. Stereotactic arrhythmia radioablation (STAR) has emerged as a novel treatment for VT in patients unresponsive to CA, leveraging techniques from stereotactic body radiation therapy used in cancer treatments.
View Article and Find Full Text PDFIn this narrative review, we review the applications of artificial intelligence (AI) into clinical magnetic resonance imaging (MRI) exams, with a particular focus on Japan's contributions to this field. In the first part of the review, we introduce the various applications of AI in optimizing different aspects of the MRI process, including scan protocols, patient preparation, image acquisition, image reconstruction, and postprocessing techniques. Additionally, we examine AI's growing influence in clinical decision-making, particularly in areas such as segmentation, radiation therapy planning, and reporting assistance.
View Article and Find Full Text PDFPurpose: To compare image quality and visibility of anatomical structures on contrast-enhanced thin-slice abdominal CT images reconstructed using super-resolution deep learning reconstruction (SR-DLR), deep learning-based reconstruction (DLR), and hybrid iterative reconstruction (HIR) algorithms.
Materials And Methods: This retrospective study included 54 consecutive patients who underwent contrast-enhanced abdominal CT. Thin-slice images (0.
The integration of deep learning (DL) in breast MRI has revolutionized the field of medical imaging, notably enhancing diagnostic accuracy and efficiency. This review discusses the substantial influence of DL technologies across various facets of breast MRI, including image reconstruction, classification, object detection, segmentation, and prediction of clinical outcomes such as response to neoadjuvant chemotherapy and recurrence of breast cancer. Utilizing sophisticated models such as convolutional neural networks, recurrent neural networks, and generative adversarial networks, DL has improved image quality and precision, enabling more accurate differentiation between benign and malignant lesions and providing deeper insights into disease behavior and treatment responses.
View Article and Find Full Text PDFObjectives: To create prediction models (PMs) for distinguishing between benign and malignant liver lesions using quantitative data from dual-energy CT (DECT) without contrast agents.
Materials And Methods: This retrospective study included patients with liver lesions who underwent DECT, including non-contrast-enhanced scans. Benign lesions included hepatic hemangioma, whereas malignant lesions included hepatocellular carcinoma, metastatic liver cancer, and intrahepatic cholangiocellular carcinoma.
Purpose: Minimal misregistration of fused PET and MRI images can be achieved with simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI). However, the acquisition of multiple MRI sequences during a single PET emission scan may impair fusion precision of each sequence. This study evaluated the diagnostic utility of time-synchronized PET/MRI using an MR active trigger and a Bayesian penalized likelihood reconstruction algorithm (BPL) to assess the locoregional extension of endometrial cancer.
View Article and Find Full Text PDFPhoton-counting CT has a completely different detector mechanism than conventional energy-integrating CT. In the photon-counting detector, X-rays are directly converted into electrons and received as electrical signals. Photon-counting CT provides virtual monochromatic images with a high contrast-to-noise ratio for abdominal CT imaging and may improve the ability to visualize small or low-contrast lesions.
View Article and Find Full Text PDFPurpose: Liver and pancreatic fibrosis is associated with diabetes mellitus (DM), and liver fibrosis is associated with pancreatic fibrosis. This study aimed to investigate the relationship between the hepatic and pancreatic extracellular volume fractions (fECVs), which correlate with tissue fibrosis, and their relationships with DM and pre-DM (pDM).
Material And Methods: We included 100 consecutive patients with known or suspected liver and/or pancreatic diseases who underwent contrast-enhanced CT.
Objective: To evaluate the image quality and lesion detectability of pancreatic phase thin-slice computed tomography (CT) images reconstructed with a deep learning-based reconstruction (DLR) algorithm compared with filtered-back projection (FBP) and hybrid iterative reconstruction (IR) algorithms.
Methods: Fifty-three patients who underwent dynamic contrast-enhanced CT including pancreatic phase were enrolled in this retrospective study. Pancreatic phase thin-slice (0.
In this review, we address the issue of fairness in the clinical integration of artificial intelligence (AI) in the medical field. As the clinical adoption of deep learning algorithms, a subfield of AI, progresses, concerns have arisen regarding the impact of AI biases and discrimination on patient health. This review aims to provide a comprehensive overview of concerns associated with AI fairness; discuss strategies to mitigate AI biases; and emphasize the need for cooperation among physicians, AI researchers, AI developers, policymakers, and patients to ensure equitable AI integration.
View Article and Find Full Text PDF