Shape memory effect, the ability to recover a pre-deformed shape on heating, results from a reversible martensitic transformation between austenite and martensite phases. Here, we demonstrate a strategy of designing high-entropy alloys (HEAs) with high-temperature shape memory effect in the CrMnFeCoNi alloy system. First, we calculate the difference in Gibbs free energy between face-centered-cubic (FCC) and hexagonal-close-packed (HCP) phases, and find a substantial increase in thermodynamic equilibrium temperature between the FCC and HCP phases through composition tuning, leading to thermally- and stress-induced martensitic transformations.
View Article and Find Full Text PDFProperties of modified surface, behavior against salting-out effect, suppressive effect for protein nonspecific adsorption, and wettability were examined using various mercapto compounds bearing methyloligoethylene glycol, oligoethylene glycol, alkyl oligoethylene glycol, alkyl phosphoryl choline, alkyl inverse phosphoryl choline, and alkyl sulfobetaine moieties. The behavior against salting-out effect was examined using gold nanoparticle with PBS and NaCl aqueous solution. The suppressive effect for protein nonspecific adsorption was evaluated by SPR, and the wettability was measured on the SPR chip.
View Article and Find Full Text PDFIn order to scrutinize potential of trialkoxysilanes to form close-packed monolayer, surface modification of silicon oxide was carried out with the trialkoxysilanes bearing a ferrocene moiety for analysis by electrochemical methods. As it was found that hydrogen-terminated silicon reacts with trialkoxysilane through natural oxidation in organic solvents, where the silicon oxide layer is thin enough to afford conductivity for electrochemical analysis, hydrogen-terminated silicon wafer was immersed in trialkoxysilane solution for surface modification without oxidation treatment. Cyclic voltammetry measurements to determine surface concentrations of the immobilized ferrocene-silane on silicon surface were carried out with various temperature, concentration, solvent, and molecular structure, while the blocking effect in the cyclic voltammogram was investigated to obtain insight into density leading to the close-packed layer.
View Article and Find Full Text PDFSurface modification of glassy carbon (GC) and highly oriented pyrolytic graphite (HOPG) was carried out with diazonium, amine, azide, and olefin derivatives bearing ferrocene as an electroactive moiety. Features of the modified surfaces were evaluated by surface concentrations of immobilized molecule, blocking effect of the modified surface against redox reaction, and surface observation using cyclic voltammetry and electrochemical scanning tunneling microscope (EC-STM). The measurement of surface concentrations of immobilized molecule revealed the following three aspects: (i) Diazonium and olefin derivatives could modify substrates with the dense-monolayer concentration.
View Article and Find Full Text PDFTwo different cationic tetraphenyl porphyrins, one with two carboxyphenyl groups in cis-position and the other in trans-position (cis- and trans-H(4)DCPP(2+)), have been examined to control the structure of their 2D supramolecular assemblies in 0.05 M H(2)SO(4) at electrochemical interfaces. Electrochemical scanning tunneling microscopy (EC-STM) images revealed the formation of supramolecularly organized nanostructures of cis-H(4)DCPP(2+) such as dimer, trimer, and tetramer on the (square root(3) x square root(7)) sulfate/bisulfate adlayer, suggesting the importance of both electrostatic interaction between cationic porphyrin core and sulfate/bisulfate adlayer and the hydrogen bond formation between carboxyl groups of the nearest neighbor cationic porphyrins.
View Article and Find Full Text PDFNearly perfect single crystals of pentacene were grown from trichlorobenzene solution. The surface structure of pentacene single crystals has been investigated by frequency modulation atomic force microscopy. Molecularly flat and extraordinarily wide terraces, extended over the width of more than a few micrometers with monomolecular steps, were consistently observed, suggesting that those pentacene crystals were nearly perfect single crystals.
View Article and Find Full Text PDFAdlayers of cobalt(II) 5,10,15,20-tetrakis(alpha,alpha,alpha,alpha-2-pivalamidophenyl)porphyrin (CoTpivPP) were prepared by immersing either Au(111) or Au(100) substrate in a benzene solution containing CoTpivPP molecules, and they were investigated in 0.1 M HClO4 and 0.1 M H2SO4 by cyclic voltammetry and in situ scanning tunneling microscopy (STM).
View Article and Find Full Text PDF