Publications by authors named "Takahiro Nishimoto"

Article Synopsis
  • Enhancing the wettability of medical implants is essential for better biocompatibility, and this study explores the use of ozone nanobubble water to improve titanium dental implants' surfaces.
  • Immersion in ozone nanobubble water for about 10 minutes changes implants from hydrophobic to superhydrophilic, maintaining this property for over a month, indicating effective surface alteration and cleaning.
  • The formation of nanoshells from ozone microbubbles contributes to the long-lasting hydrophilicity of the implants, suggesting that this method could be a promising approach for improving the compatibility of dental implants.
View Article and Find Full Text PDF

This study aimed to develop a new system, named CD-Well, for mouse PET dynamic study. CD-Well allows the determination of time-activity curves (TACs) for arterial whole blood and plasma using 2-3 µL of blood per sample; the minute sample size is ideal for studies in small animals. The system has the following merits: (1) measures volume and radioactivity of whole blood and plasma separately; (2) allows measurements at 10 s intervals to capture initial rapid changes in the TAC; and (3) is compact and easy to handle, minimizes blood loss from sampling, and delay and dispersion of the TAC.

View Article and Find Full Text PDF

A fully packed capillary electrochromatographic (CEC) microchip showing improved solution and chip handling was developed. Microchannels for the CEC microchip were patterned on a cyclic olefin copolymer substrate by injection molding and packed fully with 0.8-microm monodisperse colloidal silica beads utilizing a self-assembly packing technique.

View Article and Find Full Text PDF

We have established the nanofabrication technique for constructing nanopillars with high aspect ratio (100-500 nm diameter and 500-5000 nm tall) inside a microchannel on a quartz chip. The size of pillars and the spacing between pillars are designed as a DNA sieving matrix for optimal analysis of large DNA fragments over a few kilobase pairs (kbp). A chip with nanopillar channel and simple cross injector was developed based on the optimal design and applied to the separation of DNA fragments (1-38 kbp) and large DNA fragments (lambda DNA, 48.

View Article and Find Full Text PDF