The effect of charge-inverting modification of single surface lysine residue on the electron transfer (ET) reaction of horse heart cytochrome c (cyt c) is examined for 12 different types of mono-4-chloro-2,5-dinitrobenzoic acid substituted cyt c (mCDNPc) adsorbed on a Au(111) electrode modified with a self-assembled monolayer (SAM) of 7-mercapto-heptanoic acid (MHA). A negative shift in the redox potential by 10-35 mV as compared to that of native cyt c and a monolayer coverage in the range of 13-17 pmol cm(-2) are observed for electroactive mCDNPc's. The magnitude of the decrease in the ET rate constant (k(et)) of mCDNPc's compared with that of native cyt c depends on the position of the CDNP substitution.
View Article and Find Full Text PDFThe electrochemical properties of cytochrome c (cyt c) adsorbed on mixed self-assembled monolayers (SAMs) of 2-mercaptoethanesulfonate (MES)/2-mercaptoethanol (MEL) are compared with those on single-component SAMs of MES, MEL, and mercaptopropionic acid (MPA), using cyclic voltammetry and potential-modulated UV-vis reflectance spectroscopy. The rate constant of electron transfer (ET), k(et), of cyt c adsorbed on the SAM of MPA decreases from 1450 +/- 210 s(-1) at pH 7 to 890 +/- 100 s(-1) at pH 9. In contrast, the value of k(et) of cyt c on the SAM of MES is pH-independent at 100 +/- 15 s(-1).
View Article and Find Full Text PDF