Bioinspired pore sensing for selective detection of flagellated bacteria was investigated. The Au micropore wall surface was modified with a synthetic peptide designed from toll-like receptor 5 (TLR5) to mimic the pathogen-recognition capability. We found that intermolecular interactions between the TLR5-derived recognition peptides and flagella induce ligand-specific perturbations in the translocation dynamics of Escherichia coli, which facilitated the discrimination between the wild-type and flagellin-deletion mutant (ΔfliC) by the resistive pulse patterns thereby demonstrating the sensing of bacteria at a single-cell level.
View Article and Find Full Text PDFSystems that can control the expression of a gene both temporally and spatially are important for the study of transgenic plants. Here, we describe an artificial, controllable gene expression system using the lac regulation system from Escherichia coli that we constructed in the Chlamydomonas reinhardtii chloroplast. This system consists of a controllable reporter gene expression cassette and the Lac repressor expression cassette.
View Article and Find Full Text PDF