Fabrication of vascular networks is essential for engineering three-dimensional thick tissues and organs in the emerging fields of tissue engineering and regenerative medicine. In this study, we describe the fabrication of perfusable vascular-like structures by transferring endothelial cells using an electrochemical reaction as well as acceleration of subsequent endothelial sprouting by two stimuli: phorbol 12-myristate 13-acetate (PMA) and fluidic shear stress. The electrochemical transfer of cells was achieved using an oligopeptide that formed a dense molecular layer on a gold surface and was then electrochemically desorbed from the surface.
View Article and Find Full Text PDFFabrication of perfusable vascular networks in vitro is one of the most critical challenges in the advancement of tissue engineering. Because cells consume oxygen and nutrients during the fabrication process, a rapid fabrication approach is necessary to construct cell-dense vital tissues and organs, such as the liver. In this study, we propose a rapid molding process using an in situ crosslinkable hydrogel and electrochemical cell transfer for the fabrication of perfusable vascular structures.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2014
Fabrication of vascular networks for the delivery of oxygen and nutrients is a critical issue when engineering 3-dimensional tissues and organs. This study describes an approach that involves micromolding and electrochemical cell transfer and can be employed to fabricate endothelial cell-lined vascular-like structures that are precisely aligned at micrometer intervals in a photocrosslinkable gelatin hydrogel. Subsequent perfusion culture induces the migration and sprouting of endothelial cells in the hydrogel and facilitates luminal structure formation.
View Article and Find Full Text PDFIn this study, we describe the development of oligopeptide-modified cell culture surfaces from which adherent cells can be rapidly detached by application of an electrical stimulus. An oligopeptide, CGGGKEKEKEK, was designed with a terminal cysteine residue to mediate binding to a gold surface via a gold-thiolate bond. The peptide forms a self-assembled monolayer through the electrostatic force between the sequence of alternating charged glutamic acid (E) and lysine (K) residues.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2012
A major challenge in tissue engineering is the fabrication of vascular networks capable of delivering oxygen and nutrients throughout tissue constructs. Because cells located more than a few hundred micrometers away from the nearest capillaries are susceptible to oxygen shortages, it is crucial to develop microscale technologies for engineering a vascular structure in three-dimensionally thick tissues. This study describes an electrochemical approach for fabricating capillary-like structures precisely aligned within micrometer distances, the internal surfaces of which are covered with vascular endothelial cells in a photocrosslinkable hydrogel.
View Article and Find Full Text PDFThis paper describes a non-invasive approach for efficient detachment of cells adhered to a gold substrate via a specific oligopeptide. Detachment is effected by an electrical stimulus. The oligopeptide contains cysteine, which spontaneously forms a gold-thiolate bond on a gold surface.
View Article and Find Full Text PDFA major challenge in tissue engineering is to reproduce the native 3D microvascular architecture fundamental for in vivo functions. Current approaches still lack a network of perfusable vessels with native 3D structural organization. Here we present a new method combining self-assembled monolayer (SAM)-based cell transfer and gelatin methacrylate hydrogel photopatterning techniques for microengineering vascular structures.
View Article and Find Full Text PDF