Publications by authors named "Takahiro Hatayama"

Crossed aldol reactions of the CF-containing pseudo C symmetric cyclic imide 3 were carried out by way of the corresponding boron bisenolate to stereoselectively furnish the desired products 4 and this procedure allowed the preferential construction of the diastereomers of the compounds previously obtained from the acyclic counterpart 1.

View Article and Find Full Text PDF

Many classical vaccines contain whole pathogens and, thus, may occasionally induce adverse effects, such as inflammation. Vaccines containing purified rAgs resolved this problem, but, owing to their low antigenicity, they require adjuvants. Recently, the use of several cytokines, including thymic stromal lymphopoietin (TSLP), has been proposed for this purpose.

View Article and Find Full Text PDF

Background: Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine involved in the pathology of inflammatory skin diseases, such as atopic dermatitis and psoriasis. Tumor necrosis factor (TNF)-α, a key cytokine in inflammatory skin diseases, is a known TSLP inducer. TNF-α activates NF-κB and induces transactivation of epidermal growth factor receptor (EGFR) in epithelial cells.

View Article and Find Full Text PDF

Thymic stromal lymphopoietin (TSLP) is a key cytokine that exacerbates allergic and fibrotic reactions. Several microbes and virus components have been shown to induce TSLP production, mainly in epithelial cells. TLR4 activators, such as lipopolysaccharide (LPS), induce TSLP production in vivo, although the underlying mechanisms remain unclear.

View Article and Find Full Text PDF

Thymic stromal lymphopoietin (TSLP) plays critical roles in the induction and exacerbation of allergic diseases. These findings suggest that an inhibitor of TSLP production may be a novel drug for allergic diseases. However, conducting high-throughput screening of such compounds is difficult because there is currently no appropriate in vitro system.

View Article and Find Full Text PDF