Publications by authors named "Takahiro Furuta"

Article Synopsis
  • Atraumatic localized convexity subarachnoid hemorrhage (cSAH) is a rare type of bleeding in the brain that can be caused by issues like internal carotid artery dissection (ICAD), particularly when associated with a condition known as Eagle syndrome, characterized by an elongated styloid process (ESP).
  • A case involving a 47-year-old woman revealed cSAH along with ICAD and an ESP, leading to the diagnosis of Eagle syndrome; despite severe headaches and imaging challenges, the causes were identified and treated conservatively.
  • The findings underscore the importance of thorough investigation in cSAH cases, as recognizing conditions like Eagle syndrome can lead to better patient outcomes and prevent
View Article and Find Full Text PDF
Article Synopsis
  • Proprioception from muscle spindles is crucial for movement control managed by the cerebellum, particularly through specific cerebellar nuclear neurons that relay information to the brainstem and spinal cord.
  • This study focused on the pathways from the supratrigeminal nucleus (Su5), which processes orofacial proprioception, specifically from jaw-closing muscle spindles, revealing extensive connections to the dorsolateral hump of the interposed nucleus and the dorsolateral protuberance of the medial nucleus.
  • Findings indicate that orofacial proprioceptive signals are processed differently than those from other body parts in cerebellar circuits, highlighting the specialized role these pathways play in controlling orofacial movements.
View Article and Find Full Text PDF

Tyramide signal amplification (TSA) is a highly sensitive method for histochemical analysis. Previously, we reported a TSA system, biotinyl tyramine-glucose oxidase (BT-GO), for bright-filed imaging. Here, we develop fluorochromized tyramide-glucose oxidase (FT-GO) as a multiplex fluorescent TSA system.

View Article and Find Full Text PDF

An imaging technique across multiple spatial scales is required for extracting structural information on neurons with processes of meter scale length and specialized nanoscale structures. Here, we present a protocol combining multi-scale light microscopy (LM) with electron microscopy (EM) in mouse brain tissue. We describe tissue slice preparation and LM/EM dual labeling with EGFP-APEX2 fusion protein.

View Article and Find Full Text PDF

Proprioceptive sensory information from muscle spindles is essential for the regulation of motor functions. However, little is known about the motor control regions in the cerebellar cortex that receive proprioceptive signals from muscle spindles distributed throughout the body, including the orofacial muscles. Therefore, in this study, we investigated the pattern of projections in the rat cerebellar cortex derived from the supratrigeminal nucleus (Su5), which conveys orofacial proprioceptive information from jaw-closing muscle spindles (JCMSs).

View Article and Find Full Text PDF

A detailed protocol is provided here to visualize neuronal structures from mesoscopic to microscopic levels in brain tissues. Neuronal structures ranging from neural circuits to subcellular neuronal structures are visualized in mouse brain slices optically cleared with ScaleSF. This clearing method is a modified version of ScaleS and is a hydrophilic tissue clearing method for tissue slices that achieves potent clearing capability as well as a high-level of preservation of fluorescence signals and structural integrity.

View Article and Find Full Text PDF

The mammalian brain is organized over sizes that span several orders of magnitude, from synapses to the entire brain. Thus, a technique to visualize neural circuits across multiple spatial scales (multi-scale neuronal imaging) is vital for deciphering brain-wide connectivity. Here, we developed this technique by coupling successive light microscopy/electron microscopy (LM/EM) imaging with a glutaraldehyde-resistant tissue clearing method, ScaeSF.

View Article and Find Full Text PDF

The supratrigeminal nucleus (Su5) is a key structure for controlling jaw movements; it receives proprioceptive sensation from jaw-closing muscle spindles (JCMSs) and sends projections to the trigeminal motor nucleus (Mo5). However, the central projections and regulation of JCMS proprioceptive sensation are not yet fully understood. Therefore, we aimed to reveal the efferent and afferent connections of the Su5 using neuronal tract tracings.

View Article and Find Full Text PDF

Olfactory input is processed in the glomerulus of the main olfactory bulb (OB) and relayed to higher centers in the brain by projection neurons. Conversely, centrifugal inputs from other brain regions project to the OB. We have previously analyzed centrifugal inputs into the OB from several brain regions using single-neuron labeling.

View Article and Find Full Text PDF

The oval paracentral nucleus (OPC) was initially isolated from the paracentral nucleus (PC) within the intralaminar thalamic nuclei in rats. We have recently shown that the rat OPC receives proprioceptive inputs from jaw-closing muscle spindles (JCMSs). However, it remains unknown which cortical areas receive thalamic inputs from the OPC, and whether the cortical areas receiving the OPC inputs are distinct from those receiving inputs from the other intralaminar nuclei and sensory thalamic nuclei.

View Article and Find Full Text PDF

We developed an adeno-associated virus (AAV) vector-based technique to label mouse neostriatal neurons comprising direct and indirect pathways with different fluorescent proteins and analyze their axonal projections. The AAV vector expresses GFP or RFP in the presence or absence of Cre recombinase and should be useful for labeling two cell populations exclusively dependent on its expression. Here, we describe the AAV vector design, stereotaxic injection of the AAV vector, and a highly sensitive immunoperoxidase method for axon visualization.

View Article and Find Full Text PDF

Proprioceptive signals from body muscles have historically been considered to project to the rostrodorsal shell of the ventrobasal thalamic complex [the ventral posterolateral nucleus (VPL) and ventral posteromedial nucleus (VPM)]. However, we have recently found that proprioception from rat jaw-closing muscle spindles (JCMSs) is conveyed via the supratrigeminal nucleus to the caudo-ventromedial edge of the VPM, but not to the rostrodorsal shell of the VPM. Therefore, proprioception from other body muscles may also project to thalamic regions other than the rostrodorsal shell of the VPL.

View Article and Find Full Text PDF

An invasive intralaminar thalamic stimulation and a non-invasive application of oral splint are both effective in treating tic symptoms of patients with Tourette syndrome (TS). Therefore, these two treatments may exert some influence on the same brain region in TS patients. We thus hypothesized that the proprioceptive input arising from the muscle spindles of jaw-closing muscles (JCMSs), known to be increased by the application of oral splint, is transmitted to the intralaminar thalamic nuclei.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the responses of mechanoreceptors involved in tactile sensation, specifically analyzing the whisker array in rats to understand how these receptors code and transmit tactile information.
  • Researchers used in vivo techniques to identify and record four types of mechanoreceptors in the whisker follicle, discovering that only ring-sinus Merkel endings showed slowly adapting properties.
  • Findings revealed strong "angular tuning" for all receptor types in response to whisker deflection, but only Merkel afferents aligned with their anatomical locations; differences in tuning sensitivity were linked to anatomical features and force sensitivity along the whisker length.
View Article and Find Full Text PDF

The presubiculum plays a key role in processing and integrating spatial and head-directional information. Layer III neurons of the presubiculum provide strong projections to the superficial layers of the medial entorhinal cortex (MEC) in the rat. Our previous study revealed that the terminal distribution of efferents from layer III cells of the presubiculum was organized in a band-like fashion within the MEC, and the transverse axis of these zones ran parallel to the rhinal fissure.

View Article and Find Full Text PDF

Recently, we found that treatment of cultured mouse astrocytes of ddY-strain mice (ddY-astrocytes) with 400 μM HO for 24 h increased the intracellular labile zinc level without cell toxicity. In contrast, 170 μM HO for 12 h is reported to kill mouse astrocytes obtained from C57BL/6-strain mice (C57BL/6-astrocytes) with an increase in intracellular labile zinc. To clarify this discrepancy, we compared the intracellular zinc levels and cell toxicity in HO-treated ddY- and C57BL/6-astrocytes.

View Article and Find Full Text PDF

Excitatory interneurons account for the majority of dorsal horn neurons, and are required for perception of normal and pathological pain. We have identified largely non-overlapping populations in laminae I-III, based on expression of substance P, gastrin-releasing peptide, neurokinin B, and neurotensin. Cholecystokinin (CCK) is expressed by many dorsal horn neurons, particularly in the deeper laminae.

View Article and Find Full Text PDF

Around 75% of neurons in laminae I-II of the mouse dorsal horn are excitatory interneurons, and these are required for normal pain perception. We have shown that four largely non-overlapping excitatory interneuron populations can be defined by expression of the neuropeptides neurotensin, neurokinin B (NKB), gastrin-releasing peptide (GRP) and substance P. In addition, we recently identified a population of excitatory interneurons in glabrous skin territory that express dynorphin.

View Article and Find Full Text PDF

The superior colliculus (SC) is an essential structure for the control of eye movements. In rodents, the SC is also considered to play an important role in whisking behavior, in which animals actively move their vibrissae (mechanosensors) to gather tactile information about the space around them during exploration. We investigated how the SC contributes to vibrissal movement control.

View Article and Find Full Text PDF
Article Synopsis
  • Rodents use their whiskers (vibrissae) to gather spatial information by actively moving them, with motor control in the brain being essential for this movement.
  • Research on awake, head-fixed rats showed that different types of neurons in the motor cortex have distinct firing patterns related to whisker movement.
  • Neurons projecting to the brainstem are more active during strong whisker movements, while those connected to the opposite side of the brain (corticocallosal) fire more during small movements or rest, indicating differing roles in motor control.
View Article and Find Full Text PDF

We have recently revealed that the proprioceptive signal from jaw-closing muscle spindles (JCMSs) is conveyed to the dorsal part of granular insular cortex rostroventrally adjacent to the rostralmost part of secondary somatosensory cortex (dGIrvs2) via the caudo-ventromedial edge (VPMcvm) of ventral posteromedial thalamic nucleus (VPM) in rats. However, it remains unclear to which cortical or subcortical structures the JCMS proprioceptive information is subsequently conveyed from the dGIrvs2. To test this issue, we injected an anterograde tracer, biotinylated dextranamine, into the electophysiologically identified dGIrvs2, and analyzed the resultant distribution profiles of labeled axon terminals in rats.

View Article and Find Full Text PDF

Our motor behavior can be affected by proprioceptive information. However, little is known about which brain circuits contribute to this process. We have recently revealed that the proprioceptive information arising from jaw-closing muscle spindles (JCMSs) is conveyed to the supratrigeminal nucleus (Su5) by neurons in the trigeminal mesencephalic nucleus (Me5), then to the caudo-ventromedial edge of ventral posteromedial thalamic nucleus (VPMcvm), and finally to the dorsal part of granular insular cortex rostroventrally adjacent to the rostralmost part of secondary somatosensory cortex (dGIrvs2).

View Article and Find Full Text PDF

Glial cytoplasmic inclusions (GCIs), commonly observed as α-synuclein (α-syn)-positive aggregates within oligodendrocytes, are the pathological hallmark of multiple system atrophy. The origin of α-syn in GCIs is uncertain; there is little evidence of endogenous α-syn expression in oligodendrocyte lineage cells, oligodendrocyte precursor cells (OPCs), and mature oligodendrocytes (OLGs). Here, based on in vitro analysis using primary rat cell cultures, we elucidated that preformed fibrils (PFFs) generated from recombinant human α-syn trigger multimerization and an upsurge of endogenous α-syn in OPCs, which is attributable to insufficient autophagic proteolysis.

View Article and Find Full Text PDF

Neuron-glia communication mediated by neuro- and glio-transmitters such as ATP and zinc is crucial for the maintenance of brain homeostasis, and its dysregulation is found under pathological conditions. It is reported that under oxidative stress-loaded conditions, astrocytes exhibit increased intra- and extra-cellular labile zinc, the latter triggering microglial M1 activation, while the pathophysiological role of the former remains unrevealed. In this study, we examined whether the oxidative stress-induced increase of intracellular labile zinc is involved in the P2X7 receptor (P2X7R)-mediated regulation of astrocytic engulfing activity.

View Article and Find Full Text PDF