Publications by authors named "Takahiro Fukaya"

Purpose: The noise power spectrum (NPS) in computed tomography (CT) images potentially varies with the X-ray tube angle in a spiral orbit of the helical scan. The purpose of this study was to propose a method for measuring the NPS for each angle of the X-ray tube.

Methods: Images of the water phantom were acquired using a helical scan.

View Article and Find Full Text PDF

This study aimed to evaluate the impact of region of interest (ROI) size on noise-power spectrum (NPS) measurement in computed tomography (CT) images and to propose a novel method for measuring NPS independent of ROI size. The NPS was measured using the conventional method with an ROI of size P × P pixels in a uniform region in the CT image; the NPS is referred to as NPS. NPSs were obtained and compared to assess their dependency on ROI size.

View Article and Find Full Text PDF

Purpose: Various approaches in noise power spectrum (NPS) analysis are currently used for measuring a patient's longitudinal (z-direction) NPS from three-dimensional (3D) CT volume data. The purpose of this study was to clarify the relationship between those NPSs and 3D-NPS based on the central slice theorem.

Methods: We defined the 3D-NPS(f, f, f) that was calculated by 3D Fourier transform (FT) from 3D noise data (3D-Noise(x, y, z), x-y scan plane).

View Article and Find Full Text PDF

Purpose: The noise power spectrum (NPS) of a CT scanner is commonly measured from a single noise image. However, since CT images are three-dimensional (3D) volume data, they have 3D noise characteristics (3D-NPS). In this study, we clarify the relationship among NPSs measured by various approaches in NPS analysis based on the central slice theorem.

View Article and Find Full Text PDF

A novel method for measuring the slice sensitivity profile (SSP) of computed tomography (CT) images reconstructed using an iterative reconstruction (IR) algorithm is proposed herein. A phantom that included a low-contrast spherical object was scanned and consecutive cross-sectional images were reconstructed. The mean CT values in a region including the sphere were measured for all images and plotted as a function of slice position along the longitudinal [Formula: see text] direction to yield a mean CT value profile [Formula: see text].

View Article and Find Full Text PDF

Purpose: The method using a numerical slit (slit method) is used commonly to obtain the one-dimensional (1D) noise power spectrum (NPS) in computed tomography. However, the relationship between the 1D-NPS obtained by the slit method and the original two-dimensional (2D) NPS derived by the 2D Fourier transformation has not been elucidated clearly. The purpose of this study was to clarify their relationship based on the well-known central slice theorem (projection slice theorem) and validate it using computer simulation analysis.

View Article and Find Full Text PDF

Purpose: A method for measuring the slice sensitivity profile (SSP) of computed tomography (CT) images reconstructed with iterative reconstruction (IR) algorithms was reported by the AAPM Task Group 233 (TG233). In this method, the phantom plane edge is slightly slanted with respect to the scan plane to obtain a composite oversampled edge-spread function (ESF). However, it is expected that a fine-sampled ESF can be obtained directly from images reconstructed with a small slice increment without slanting the edge plane.

View Article and Find Full Text PDF

Aptamers are mainly selected by in vitro selection using random nucleic acid libraries. These aptamers have often shown insufficient affinity for biomedical applications. We improved DNA aptamer binding affinity for vascular endothelial growth factor (VEGF) through in silico maturation (ISM) and aptamer multimerization.

View Article and Find Full Text PDF

We propose a novel enzyme-labeling method for DNA aptamers using enzyme-fused zinc finger proteins. We achieved thrombin detection and vascular endothelial growth factor detection using zinc finger-fused firefly luciferase.

View Article and Find Full Text PDF

We have developed a bound/free separation system using a vascular endothelial growth factor (VEGF) aptamer and a peptide nucleic acid (PNA) to detect VEGF. In this system, we designed capture PNA (CaPNA), which hybridizes with the aptamer in the absence of the target protein, but does not hybridize with the aptamer in the presence of the target protein due to steric hindrance and/or stabilization of the aptamer's structure. By removing the aptamers not bound to the target protein using CaPNA immobilized beads, we can detect the target protein by measuring signals labeled with the aptamer in the supernatant.

View Article and Find Full Text PDF

We performed a simulation for artifacts on liver dynamic MR imaging with the contrast agent gadolinium-ethoxybenzyl (Gd-EOB)-DTPA. The signal enhancement of the image by the contrast agent in the arterial dominant phase was assumed, and the time-enhancement curve was numerically generated. The data in k-space was obtained by the Fourier transform of a liver image.

View Article and Find Full Text PDF