Publications by authors named "Takahiro Asanuma"

Motivated by our recent experiments that demonstrate that the tandemly repeated genes become heterochromatin, here we show a theory of heterochromatin assembly by taking into account the connectivity of these genes along the chromatin in the kinetic equations of small RNA production and histone methylation, which are the key biochemical reactions involved in the heterochromatin assembly. Our theory predicts that the polymeric nature of the tandemly repeated genes ensures the steady production of small RNAs because of the stable binding of nascent RNAs produced from the genes to RDRC/Dicers at the surface of nuclear membrane. This theory also predicts that the compaction of the tandemly repeated genes suppresses the production of small RNAs, consistent with our recent experiments.

View Article and Find Full Text PDF

In most eukaryotes, constitutive heterochromatin, defined by histone H3 lysine 9 methylation (H3K9me), is enriched on repetitive DNA, such as pericentromeric repeats and transposons. Furthermore, repetitive transgenes also induce heterochromatin formation in diverse model organisms. However, the mechanisms that promote heterochromatin formation at repetitive DNA elements are still not clear.

View Article and Find Full Text PDF

FACT (facilitate chromatin transcription) is involved in heterochromatic silencing, but its mechanisms and function remain unclear. We reveal that the Spt16 recruitment mechanism operates in two distinct ways in heterochromatin. First, Pob3 mediates Spt16 recruitment onto the heterochromatin through its Spt16 dimerization and tandem PH domains.

View Article and Find Full Text PDF

Gene expression vectors are useful and important tools that are commonly used in a variety of experiments, including expression of foreign genes, functional analysis of genes of interest and complementation experiments. In this study, a hybrid promoter, combining the adh1 upstream activating sequence (UAS) of fission yeast and the GAL10 core promoter of budding yeast, was constructed to enable high level expression depending on the presence of zinc in culture medium for fission yeast. When the hybrid promoter was cloned on the multicopy plasmid, it was fully induced and repressed within 10 h in the presence and absence of zinc, respectively.

View Article and Find Full Text PDF

Abp1 is a fission yeast CENP-B homologue that contributes to centromere function, silencing at pericentromeric heterochromatin and silencing of retrotransposons. We identified the sfh1 gene, encoding a core subunit of the fission yeast chromatin remodeling complex RSC as an Abp1-interacting protein. Because sfh1 is essential for growth, we isolated temperature-sensitive sfh1 mutants.

View Article and Find Full Text PDF