Publications by authors named "Takahiko Sasaki"

Commercially available formulations of the popular conductive polymer, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) are aqueous dispersions that require the addition of secondary dopants such as dimethyl sulphoxide (DMSO) or ethylene glycol (EG) for fabricated films to have the desired levels of conductivity. Clevios F HC Solar, a formulation of PEDOT:PSS produced by Heraeus, GmbH, achieves over 500 S/cm without these secondary dopants. This work studies whether secondary dopants such as DMSO have any additional effect on this type of PEDOT:PSS.

View Article and Find Full Text PDF

Wide ranges of absorbance spectra were measured to elucidate a difference in the antiferro-electric (AF) ordering mechanisms below 50 and 168 K in CsH(SeO) and CsD(SeO), respectively. Collective excitations due to deuterons successfully observed at 610 cm exhibit a remarkable isotope effect. This indicates that the transfer state in the dimer of CsD(SeO) is dominated by a deuteron hopping in contrast to CsH(SeO), where a proton hopping makes a tiny contribution compared to a phonon-assisted proton tunneling (PAPT) associated with 440-cm def .

View Article and Find Full Text PDF

In phases III and IV of CsH(SeO), the vibrational state and intrabond transfer of the proton in the dimeric selenates are systematically studied with a wide range of absorbance spectra, a spin-lattice relaxation rate of H-NMR (T ), and DFT calculations. The OH stretching vibrations have extremely broad absorption at around 2350 (B band) and 3050 cm (A band), which originate from the 0-1 and 0-2 transitions in the asymmetric double minimum potential, respectively. The anharmonic-coupling calculation makes clear that the A band couples not only to the libration but also to the OH bending band.

View Article and Find Full Text PDF

The behavior of interacting spins subject to randomness is a longstanding issue and the emergence of exotic quantum states is among intriguing theoretical predictions. We show how a quantum-disordered phase emerges from a classical antiferromagnet by controlled randomness. ^{1}H NMR of a successively x-ray-irradiated organic Mott insulator finds that the magnetic order collapses into a spin-glass-like state, immediately after a slight amount of disorder centers are created, and evolves to a gapless quantum-disordered state without spin freezing, spin gap, or critical slowing down, as reported by T.

View Article and Find Full Text PDF

Solid-state physics and soft-matter physics have been developed independently, with little mutual exchange of the underlying physical concepts. However, after many studies of correlated electron systems, it has been recognized that correlated electrons (especially in Mott-transition systems) in solid matter sometimes show behavior similar to "structured fluids" in soft matter; that is, the electrons exhibit long-length self-organization (but without long-range order) and slow dynamics, which is inevitable for the long-length structures. The essential question is this: what condition causes such behavior in solid matter? We focused on an organic Mott-transition system and demonstrated that the electrons of this system fluctuate very slowly only when the following two factors are met simultaneously: (i) the electronic system is on the metal and Mott-insulator boundary and (ii) the system is subject to quenched disorder.

View Article and Find Full Text PDF

Inelastic neutron scattering measurements on the molecular dimer-Mott insulator κ-(BEDT-TTF)_{2}Cu[N(CN)_{2}]Cl reveal a phonon anomaly in a wide temperature range. Starting from T_{ins}∼50-60  K where the charge gap opens, the low-lying optical phonon modes become overdamped upon cooling towards the antiferromagnetic ordering temperature T_{N}=27  K, where also a ferroelectric ordering at T_{FE}≈T_{N} occurs. Conversely, the phonon damping becomes small again when spins and charges are ordered below T_{N}, while no change of the lattice symmetry is observed across T_{N} in neutron diffraction measurements.

View Article and Find Full Text PDF

Carbon monoxide (CO) and nitric oxide (NO) exhibit physiological properties that include the activation of guanylate cyclase. NO inhibits replication of rhinovirus (RV), a major cause of the common cold and exacerbation of bronchial asthma and chronic obstructive pulmonary disease. However, the anti-rhinoviral effects of CO remain unclear.

View Article and Find Full Text PDF

The Mott metal-insulator transition, a paradigm of strong electron-electron correlations, has been considered as a source of intriguing phenomena. Despite its importance for a wide range of materials, fundamental aspects of the transition, such as its universal properties, are still under debate. We report detailed measurements of relative length changes Δ/ as a function of continuously controlled helium-gas pressure for the organic conductor κ-(BEDT-TTF)Cu[N(CN)]Cl across the pressure-induced Mott transition.

View Article and Find Full Text PDF

Histone posttranslational modifications (HPTMs) are involved in chromatin-based regulation of fungal secondary metabolite biosynthesis (SMB) in which the corresponding genes-usually physically linked in co-regulated clusters-are silenced under optimal physiological conditions (nutrient-rich) but are activated when nutrients are limiting. The exact molecular mechanisms by which HPTMs influence silencing and activation, however, are still to be better understood. Here we show by a combined approach of quantitative mass spectrometry (LC-MS/MS), genome-wide chromatin immunoprecipitation (ChIP-seq) and transcriptional network analysis (RNA-seq) that the core regions of silent A.

View Article and Find Full Text PDF

Histone H1 variants, known as linker histones, are essential chromatin components in higher eukaryotes, yet compared to the core histones relatively little is known about their in vivo functions. The filamentous fungus Neurospora crassa encodes a single H1 protein that is not essential for viability. To investigate the role of N.

View Article and Find Full Text PDF

H3K9 methylation directs heterochromatin formation by recruiting multiple heterochromatin protein 1 (HP1)-containing complexes that deacetylate histones and methylate cytosine bases in DNA. In Neurospora crassa, a single H3K9 methyltransferase complex, called the DIM-5,-7,-9, CUL4, DDB1 Complex (DCDC), is required for normal growth and development. DCDC-deficient mutants are hypersensitive to the genotoxic agent methyl methanesulfonate (MMS), but the molecular basis of genotoxic stress is unclear.

View Article and Find Full Text PDF

We report on the dramatic slowing down of the charge carrier dynamics in a quasi-two-dimensional organic conductor, which can be reversibly tuned through the Mott metal-insulator transition (MIT). At the finite-temperature critical end point, we observe a divergent increase of the resistance fluctuations accompanied by a drastic shift of spectral weight to low frequencies, demonstrating the critical slowing down of the order parameter (doublon density) fluctuations. The slow dynamics is accompanied by non-Gaussian fluctuations, indicative of correlated charge carrier dynamics.

View Article and Find Full Text PDF

Dynamical localization, that is, reduction of the intersite electronic transfer integral t by an alternating electric field, E(ω), is a promising strategy for controlling strongly correlated systems with a competing energy balance between t and the Coulomb repulsion energy. Here we describe a charge localization induced by the 9.3 MV cm(-1) instantaneous electric field of a 1.

View Article and Find Full Text PDF

The development of whole-genome bisulfite sequencing (WGBS) has resulted in a number of exciting discoveries about the role of DNA methylation leading to a plethora of novel testable hypotheses. Methods for constructing sodium bisulfite-converted and amplified libraries have recently advanced to the point that the bottleneck for experiments that use WGBS has shifted to data analysis and interpretation. Here we present empirical evidence for an over-representation of reads from methylated DNA in WGBS.

View Article and Find Full Text PDF

In response to genotoxic stress, ATR and ATM kinases phosphorylate H2A in fungi and H2AX in animals on a C-terminal serine. The resulting modified histone, called γH2A, recruits chromatin-binding proteins that stabilize stalled replication forks or promote DNA double-strand-break repair. To identify genomic loci that might be prone to replication fork stalling or DNA breakage in Neurospora crassa, we performed chromatin immunoprecipitation (ChIP) of γH2A followed by next-generation sequencing (ChIP-seq).

View Article and Find Full Text PDF

We report a novel insulator-insulator transition arising from the internal charge degrees of freedom in the two-dimensional quarter-filled organic salt β-(meso-DMBEDT-TTF)2PF6. The optical conductivity spectra above Tc=70 K display a prominent feature of the dimer Mott insulator, characterized by a substantial growth of a dimer peak near 0.6 eV with decreasing temperature.

View Article and Find Full Text PDF

Respiratory virus infections, including infections with rhinoviruses (RVs), are related to exacerbations of chronic obstructive pulmonary disease (COPD). A new quinolone antibiotic, levofloxacin (LVFX), has been used to treat bacterial infections that cause COPD exacerbations as well as bacterial infections that are secondary to viral infection in COPD patients. However, the inhibitory effects of LVFX on RV infection and RV infection-induced airway inflammation have not been studied.

View Article and Find Full Text PDF

Pemetrexed (PEM) is a novel, multitargeted, antifolate, antineoplastic agent for the treatment of non-small cell lung cancer and malignant pleural mesothelioma. Additional effects of nitric oxide (NO) donors on the chemosensitivity of cancers have been reported. However, the effects of an NO donor on PEM-induced cytotoxicity remain unknown.

View Article and Find Full Text PDF

Infection by rhinoviruses (RVs) causes exacerbations of chronic obstructive pulmonary disease (COPD). The long-acting anti-cholinergic agent tiotropium reduces the frequency of COPD exacerbations, but the inhibitory effects of tiotropium on the COPD exacerbations induced by RVs are unclear. Likewise, the effects of tiotropium on RVs infection remain to be studied.

View Article and Find Full Text PDF

To examine the effects of l-carbocisteine on airway infection with respiratory syncytial (RS) virus, human tracheal epithelial cells were pretreated with l-carbocisteine and infected with RS virus. Viral titer, virus RNA, and pro-inflammatory cytokine secretion, including interleukin (IL)-1 and IL-6, increased with time after infection. l-carbocisteine reduced the viral titer in the supernatant fluids, the amount of RS virus RNA, RS virus infection susceptibility, and the concentration of pro-inflammatory cytokines induced by virus infection.

View Article and Find Full Text PDF

Purpose: Erlotinib is the first epidermal growth factor receptor-tyrosine kinase inhibitor shown to provide a survival benefit for advanced non-small-cell lung cancer (NSCLC) patients. Adverse drug reactions of erlotinib in Japanese, which may be very different from those in Caucasians because of differences in genetic background, have not been fully reported. Therefore, we aimed to clarify the safety profile of erlotinib.

View Article and Find Full Text PDF

The mechanism underlying the hepatotoxicity induced by arsenic exposure is well investigated. However, little is known about the detailed mechanisms of arsenic-induced cardiotoxicity or cardiac factors involved in high sensitivity to arsenicals in spite of the fact that arsenic trioxide, which is used to treat acute promyelocytic leukemia, causes cardiotoxicity. Here, we show that rat H9c2(2-1) cardiac myocytes exhibit high sensitivity to inorganic arsenite (As(III)) as compared with rat-derived four cell lines (liver epithelial TRL1215 cells, kidney epithelial NRK-52E cells, PC12 phechromocytoma cells and C6 glioma cells).

View Article and Find Full Text PDF

Acute exacerbations of chronic obstructive pulmonary disease (COPD), an acute worsening of respiratory symptoms, generally result in a poor prognosis. Successful prevention and management of such exacerbations is thus important for patient care. Viral infection, primarily with rhinovirus (RV), is the foremost cause of exacerbations in COPD patients.

View Article and Find Full Text PDF

β(2) agonists reduce the frequency of exacerbations in patients with bronchial asthma and chronic obstructive pulmonary disease caused by respiratory virus infection. β(2) agonists reduce the production of pro-inflammatory cytokines. However, the inhibitory effects of β(2) agonists on the infection of rhinovirus, the major cause of exacerbations, have not been well studied.

View Article and Find Full Text PDF