Publications by authors named "Takahide Matsuoka"

A theoretical method for real-time dynamics of nonadiabatic reorganization of electronic configurations in molecules is developed, with dual aim that the intramolecular electron dynamics can be probed by means of direct and/or indirect photoionizations and that the physical origins behind photoionization signals attained in the time domain can be identified in terms of the language of time-dependent quantum chemistry. In doing so, we first formulate and implement a new computational scheme for nonadiabatic electron dynamics associated with molecular ionization, which well fits in the general theory of nonadiabatic electron dynamics. In this method, the total nonadiabatic electron wavepackets are propagated in time directly with complex natural orbitals without referring to Hartree-Fock molecular orbitals, and the amount of electron flux from a molecular region leading to ionization is evaluated in terms of the relevant complex natural orbitals.

View Article and Find Full Text PDF

A theory for dynamics of molecular photoionization from nonadiabatic electron wavepackets driven by intense pulse lasers is proposed. Time evolution of photoelectron distribution is evaluated in terms of out-going electron flux (current of the probability density of electrons) that has kinetic energy high enough to recede from the molecular system. The relevant electron flux is in turn evaluated with the complex-valued electronic wavefunctions that are time evolved in nonadiabatic electron wavepacket dynamics in laser fields.

View Article and Find Full Text PDF

Some quantum interference effects are exposed directly in experiments, but others are not and remain just hidden and thus require thorough theoretical analysis to be exposed. In this respect, the second absorption bands of IX (X = Cl, Br) molecules show an interesting behavior in the photofragment anisotropy of the lowest I((2)P3/2)+X((2)P3/2) product channel; it changes from strongly parallel distribution on the shorter wavelength side to strongly perpendicular distribution on the longer wavelength side. Because the responsible perpendicular third Ω = 1 (1(III)) excited state correlating adiabatically to this product channel has only a weak absorption, the parallel component flux yielding the same products must be comparatively weak, even though the responsible parallel excitations to the 0(+)(III) and/or 0(+)(IV) excited states have strong absorptions.

View Article and Find Full Text PDF

Several phenomena, which were made clear by psycho-acoustic experiments, have not electric physiologic evidence data. The missing fundamental phenomenon is one of the phenomena. We try making clear the mechanism how the missing fundamental is produced.

View Article and Find Full Text PDF