During macroautophagy, cytoplasmic constituents are engulfed by autophagosomes. Lysosomes fuse with closed autophagosomes but not with unclosed intermediate structures. This is achieved in part by the late recruitment of the autophagosomal SNARE syntaxin 17 (STX17) to mature autophagosomes.
View Article and Find Full Text PDFSmall extracellular vesicles (sEVs) are largely classified into two types, plasma-membrane derived sEVs and endomembrane-derived sEVs. The latter type (referred to as exosomes herein) is originated from late endosomes or multivesicular bodies (MVBs). In order to release exosomes extracellularly, MVBs must fuse with the plasma membrane, not with lysosomes.
View Article and Find Full Text PDFAutophagy is a self-digestive process that is conserved in eukaryotic cells and responsible for maintaining cellular homeostasis through proteolysis. By this process, cells break down their own components in lysosomes. Autophagy can be classified into three categories: macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA).
View Article and Find Full Text PDFThe small GTPase Rab22A is an important regulator of the formation of tubular endosomes, which are one of the types of recycling endosome compartments of the clathrin-independent endocytosis pathway. In order to regulate tubular endosome formation, Rab22A must be activated by a specific guanine-nucleotide-exchange factor (GEF); however, all of the GEFs that have been reported to exhibit Rab22A-GEF activity in vitro also activate Rab5A, an essential regulator of the clathrin-mediated endocytosis pathway, and no Rab22A-specific GEF has ever been identified. Here, we identified Vps9d1, a previously uncharacterized vacuolar protein sorting 9 (VPS9) domain-containing protein, as a novel Rab22A-GEF.
View Article and Find Full Text PDFRab5 and Rab7 are known to regulate endosome maturation, and a Rab5-to-Rab7 conversion mediated by a Rab7 activator, Mon1-Ccz1, is essential for progression of the maturation process. However, the importance and mechanism of Rab5 inactivation during endosome maturation are poorly understood. Here, we report a novel Rab5-GAP, TBC1D18, which is associated with Mon1 and mediates endosome maturation.
View Article and Find Full Text PDFExosomes are small extracellular vesicles that originate from the intraluminal vesicles of multivesicular bodies (MVBs). We previously reported that polarized Madin-Darby canine kidney (MDCK) epithelial cells secrete two types of exosomes, apical and basolateral exosomes, from different MVBs. However, how these MVBs are selectively targeted to the apical or basolateral membrane remained unknown.
View Article and Find Full Text PDFExosomes, important players in cell-cell communication, are small extracellular vesicles of endocytic origin. Although single cells are known to release various kinds of exosomes (referred to as exosomal heterogeneity), very little is known about the mechanisms by which they are produced and released. Here, we established methods of studying exosomal heterogeneity by using polarized epithelial cells and showed that distinct types of small extracellular vesicles (more specifically CD9- and CD63-positive, Annexin I-negative small extracellular vesicles, which we refer to as exosomes herein) are differentially secreted from the apical and basolateral sides of polarized epithelial cells.
View Article and Find Full Text PDFThe small GTPase Rab11 (herein referring to the Rab11A and Rab11B isoforms) plays pivotal roles in diverse physiological phenomena, including the recycling of membrane proteins, cytokinesis, neurite outgrowth and epithelial morphogenesis. One effective method of analyzing the function of endogenous Rab11 is to overexpress a Rab11-binding domain from one of its effectors, for example, the C-terminal domain of Rab11-FIP2 (Rab11-FIP2-C), as a dominant-negative construct. However, the drawback of this method is the broader Rab-binding specificity of the effector domain, because Rab11-FIP2-C binds to Rabs other than Rab11, for example, to Rab14 and Rab25.
View Article and Find Full Text PDFMammalian autophagosomes possess the Qa-SNARE STX17 (syntaxin 17) for fusion with lysosomes. However, STX17 is not absolutely required for fusion because STX17 knockout cells partially retain autophagosome-lysosome fusion activity. We recently identified YKT6, an R-SNARE, as another autophagosomal SNARE protein that acts independently of STX17 in mammals.
View Article and Find Full Text PDFMacroautophagy is an evolutionarily conserved catabolic mechanism that delivers intracellular constituents to lysosomes using autophagosomes. To achieve degradation, lysosomes must fuse with closed autophagosomes. We previously reported that the soluble -ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein syntaxin (STX) 17 translocates to autophagosomes to mediate fusion with lysosomes.
View Article and Find Full Text PDFSmall GTPase Rab12 regulates mTORC1 (mammalian target of rapamycin complex 1) activity and autophagy through controlling PAT4 (proton/amino acid transporter 4) trafficking from recycling endosomes to lysosomes, where PAT4 is degraded. However, the precise regulatory mechanism of the Rab12-mediated membrane trafficking pathway remained to be determined because a physiological Rab12-GEF (guanine nucleotide exchange factor) had yet to be identified. In this study we performed functional analyses of Dennd3, which has recently been shown to possess a GEF activity toward Rab12 in vitro.
View Article and Find Full Text PDFThe transferrin receptor (TfR) is responsible for iron uptake through its trafficking between the plasma membrane and recycling endosomes, and as a result it has become a well-known marker for recycling endosomes. Although the molecular basis of the TfR recycling pathway has been thoroughly investigated, the TfR degradation mechanism has been poorly understood. Exposure of cultured cells to two drugs, the protein synthesis inhibitor cycloheximide and the V-ATPase inhibitor bafilomycin A1, recently showed that TfR is not only recycled back to the plasma membrane after endocytosis but is constitutively transported to lysosomes for degradation.
View Article and Find Full Text PDFWe screened for a Rab39-specific effector by performing a yeast two-hybrid assay with GTP-locked Rab39A/B as the bait and identified UACA (uveal autoantigen with coiled-coil domains and ankyrin repeats) as a specific Rab39A/B-binding protein. Deletion analysis revealed that a C-terminal coiled-coil domain of UACA functions as a GTP-dependent Rab39-binding domain. shRNA-mediated knockdown of endogenous Rab39A or UACA in mouse neuroblastoma Neuro2A cells resulted in a change in retinoic acid-induced neurite morphology from a multipolar morphology to a bipolar morphology.
View Article and Find Full Text PDFAutophagy is an evolutionarily conserved catabolic mechanism that targets intracellular molecules and damaged organelles to lysosomes. Autophagy is achieved by a series of membrane trafficking events, but their regulatory mechanisms are poorly understood. Here, we report small GTPase Rab12 as a new type of autophagic regulator that controls the degradation of an amino-acid transporter.
View Article and Find Full Text PDFSmall GTPase Rab17 has recently been shown to regulate dendritic morphogenesis of mouse hippocampal neurons; however, the exact molecular mechanism of Rab17-mediated dendritogenesis remained to be determined, because no guanine nucleotide exchange factor (GEF) for Rab17 had been identified. In this study we screened for the Rab17-GEF by performing yeast two-hybrid assays with a GDP-locked Rab17 mutant as bait and found that Rabex-5 and ALS2, both of which were originally described as Rab5-GEFs, interact with Rab17. We also found that expression of Rabex-5, but not of ALS2, promotes translocation of Rab17 from the cell body to the dendrites of developing mouse hippocampal neurons.
View Article and Find Full Text PDFExocytosis is a key event in mast cell functions. By this process, mast cells release inflammatory mediators, contained in secretory granules (SGs), which play important roles in immunity and wound healing but also provoke allergic and inflammatory responses. The mechanisms underlying mast cell exocytosis remained poorly understood.
View Article and Find Full Text PDFSmall GTPase Rab functions as a molecular switch that drives membrane trafficking through specific interaction with its effector molecule. Thus, identification of its specific effector domain is crucial to revealing the molecular mechanism that underlies Rab-mediated membrane trafficking. Because of the large numbers of Rab isoforms in higher eukaryotes, however, the effector domains of most of the vertebrate- or mammalian-specific Rabs have yet to be determined.
View Article and Find Full Text PDFNeurons are compartmentalized into two morphologically, molecularly, and functionally distinct domains: axons and dendrites, and precise targeting and localization of proteins within these domains are critical for proper neuronal functions. It has been reported that several members of the Rab family small GTPases that are key mediators of membrane trafficking, regulate axon-specific trafficking events, but little has been elucidated regarding the molecular mechanisms that underlie dendrite-specific membrane trafficking. Here we show that Rab17 regulates dendritic morphogenesis and postsynaptic development in mouse hippocampal neurons.
View Article and Find Full Text PDFPlasma membrane receptor proteins play a key role in signal transduction and nutrient uptake, thereby controlling quality of receptor proteins is one of the most important issues in cellular logistics. After endocytosis, receptor proteins are generally delivered to lysosomes for degradation or recycled back to the plasma membrane for recycling. Transferrin receptor (TfR) is a well-known representative of recycling receptor proteins, which are traveled between plasma membrane and recycling endosomes.
View Article and Find Full Text PDFTransferrin receptor (TfR) is a well-characterized plasma membrane protein that travels between the plasma membrane and intracellular membrane compartments. Although TfR itself should undergo degradation, the same as other intracellular proteins, whether a specific TfR degradation pathway exists has never been investigated. In this study, we screened small GTPase Rab proteins, common regulators of membrane traffic in all eukaryotes, for proteins that are specifically involved in TfR degradation.
View Article and Find Full Text PDFThe double C2 (Doc2) family is characterized by an N-terminal Munc13-1-interacting domain and C-terminal tandem C2 domains, and it comprises three isoforms, Doc2alpha, Doc2beta, and Doc2gamma, in humans and mice. Doc2alpha, the best-characterized, brain-specific isoform, exhibits Ca(2+)-dependent phospholipid-binding activity through its C2A domain, and the Ca(2+)-binding activity is thought to be important for the regulation of Ca(2+)-dependent exocytosis. In contrast to the C2A domain, however, nothing is known about the physiological functions of the C2B domain in regulated exocytosis.
View Article and Find Full Text PDFThe Rab family belongs to the Ras-like small GTPase superfamily and is implicated in membrane trafficking through interaction with specific effector molecules. Because of the large number of Rab isoforms in mammals, however, the effectors of most of the mammalian Rabs are yet to be identified. In this study, we systematically screened five different cell or tissue lysates for novel Rab effectors by a combination of glutathione S-transferase (GST) pull-down assay with 60 different mammalian Rabs and mass spectroscopic analysis.
View Article and Find Full Text PDF