Orthodontic treatments often involve tooth movement to improve dental alignment. In this study, we aimed to compare tooth movement in regenerated bone induced by two different bone fillers, carbonated hydroxyapatite (CAP) and deproteinized bovine bone mineral (DBBM). Four beagle dogs were used in this comparative study.
View Article and Find Full Text PDFObjective: Root resorption may occur during orthodontic treatment. Herein, we investigated the effect of a culture supernatant of stem cells derived from human exfoliated deciduous teeth on root resorption.
Design: Twelve 8-week-old male Sprague-Dawley rats were used, and their maxillary first molars were pulled with excessive orthodontic force to induce root resorption.
In this study, we assessed the effects of human deciduous dental pulp-derived mesenchymal stem cell-derived conditioned medium (SHED-CM) on the properties of various cell types. The effects of vascular endothelial growth factor (VEGF) in SHED-CM on the luminal architecture, proliferative ability, and angiogenic potential of human umbilical vein endothelial cells (HUVECs) were determined. We also investigated the effects of SHED-CM on the proliferation of human-bone-marrow mesenchymal stem cells (hBMSCs) and mouse calvarial osteoblastic cells (MC3T3-E1) as well as the expression of , , and .
View Article and Find Full Text PDFThe objective of this study was to clarify the efficiency of a combination of stem cells from human deciduous teeth and carbonate apatite in bone regeneration of calvarial defects. Immunodeficient mice ( = 5 for each group/4 groups) with artificial calvarial bone defects (5 mm in diameter) were developed, and stem cells from human deciduous teeth (SHEDs) and carbonate hydroxyapatite (CAP) granules were transplanted with an atelocollagen sponge as a scaffold. A 3D analysis using microcomputed tomography, and 12 weeks after transplantation, histological and immunohistochemical evaluations of markers of bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF), and cluster of differentiation (CD) 31 were performed.
View Article and Find Full Text PDFBackground/purpose: Baicalin, a natural bioactive flavonoid extracted from Georgi, mediates bone metabolism, and recent studies have revealed that it has cell signaling properties. However, its biological functions in cementoblasts still remain unclear. This study therefore aimed to investigate the effects of baicalin on bone resorption markers, including osteoprotegerin (OPG) and receptor activator of nuclear factor-κβ ligand (RANKL), in human cementoblast-lineage cells, as well as their proliferation ability.
View Article and Find Full Text PDFObjective: Stem cells from human exfoliated deciduous teeth (SHED) have bone regeneration ability and potential therapeutic applications. CD146, a cell adhesion protein expressed by vascular endothelial cells, is involved in osteoblastic differentiation of stem cells. The effect of CD146 on SHED-mediated bone regeneration in vivo remains unknown.
View Article and Find Full Text PDFProlonged treatment and painful tooth movement are major problems for patients undergoing orthodontic treatment. Accelerating the movement of teeth leads to shortening of the treatment period, so various studies on the movement of teeth have been conducted in the field of orthodontics. In previous studies, we performed a fiber incision-like fiberotomy using an Er:YAG laser in rats and confirmed acceleration of tooth movement.
View Article and Find Full Text PDFObjective: Baicalin mediates bone metabolism and has shown protective activity against periodontal tissue damage in a rat model of periodontitis. Therefore, we hypothesized that baicalin may inhibit the root resorption that occurs during orthodontic tooth movement and examined its effect on the histological changes in periodontal tissue that occur during tooth movement.
Methods: First molars of rats were subjected to traction using excessive orthodontic force to produce a root resorption model.
In recent years, laser irradiation in the near-infrared ray (NIR) area has been reported to promote bone healing. There are also reports that laser irradiation accelerates orthodontic tooth movement. In this study, we investigated the effect of NIR laser irradiation and mechanical stimulation on osteoblasts.
View Article and Find Full Text PDFObjectives: Cleft lip and palate (CL/P) are common congenital orofacial anomalies. Autogenous iliac bone grafting closes alveolar cleft defects but requires surgical intervention. Mesenchymal stem cell culture supernatant can regenerate tissues via paracrine activity.
View Article and Find Full Text PDFStem cells from human exfoliated deciduous teeth (SHED) and human dental pulp stem cells (hDPSCs) have emerged as attractive cell sources for bone regeneration. However, the specific teeth and the conditions most suitable for stem cell isolation remain unclear. Therefore, the success rate of SHED and hDPSCs isolation, the patient age and remaining root length in deciduous teeth were evaluated.
View Article and Find Full Text PDFObjective: Cleft lip and palate (CLP) is a common anomaly of the orofacial region. Mesenchymal stem cell (MSC) transplantation has been a focus of regenerative medicine, and its application to the repair of bone defects in patients with CLP is highly anticipated. This study investigated the potential for using MSCs to regenerate bone in a jaw cleft as well as the survival of transplanted MSCs using a canine model of CLP.
View Article and Find Full Text PDFBackground/purpose: Mesenchymal stem cells (MSCs) transplantation has previously been used in the field of regenerative medicine. Although bone regeneration is known to occur through the interaction between osteoblasts and osteoclasts, the effect of MSCs on osteoclasts is unknown. Therefore, the purpose of this study was to investigate the effect of MSCs on the chemotaxis of osteoclast precursor cells (RAW264 macrophage cells).
View Article and Find Full Text PDFBackground: Baicalin constitutes a natural bioactive flavonoid extracted from Scutellaria baicalensis Georgi that mediates bone formation. However, the biological functions of baicalin in cementoblasts remain unclear. The purpose of this study was to examine the effects of baicalin on osteogenic differentiation of human cementoblast (HCEM) cells.
View Article and Find Full Text PDFTransplantation of mesenchymal stem cells (MSCs) has been extensively studied in the field of regenerative medicine. Bone regeneration is achieved via the interaction of osteoblasts and osteoclasts. However, the influence of MSCs on osteoclasts is unknown.
View Article and Find Full Text PDFAmelogenins are enamel matrix proteins that play crucial roles in enamel formation. Previous studies have indicated that amelogenin and amelogenin C-terminal peptides have cell-signaling functions. Recently, adipocyte-derived mesenchymal stem cells (ADSCs) have received attention as a potential source of stem cells for use in regeneration therapy.
View Article and Find Full Text PDFRegeneration of tissue, including bone, using mesenchymal stem cells (MSCs) has been progressing rapidly. Regeneration of bone requires the presence of an appropriate environment and efficient chemotaxis of cells to the target site. Differentiation of MSCs into mesenchymal cells has received considerable attention, but the effect of MSCs on chemotaxis is not well understood.
View Article and Find Full Text PDFObjectives: Mesenchymal stem cells (MSCs) are used clinically in tissue engineering and regenerative medicine. The proliferation and osteogenic differentiation potential of MSCs vary according to factors such as tissue source and cell population heterogeneity. Dental tissue has received attention as an easily accessible source of high-quality stem cells.
View Article and Find Full Text PDFCleft lip and palate is the most common congenital anomaly in the orofacial region. Autogenous iliac bone graft, in general, has been employed for closing the bone defect at the alveolar cleft. However, such iliac bone graft provides patients with substantial surgical and psychological invasions.
View Article and Find Full Text PDFLaser irradiation activates a range of cellular processes and can promote tissue repair. Here, we examined the effects of high-frequency near-infrared (NIR) diode laser irradiation on the proliferation and migration of mouse calvarial osteoblastic cells (MC3T3-E1). MC3T3-E1 cells were cultured and exposed to high-frequency (30 kHz) 910-nm diode laser irradiation at a dose of 0, 1.
View Article and Find Full Text PDF