Publications by authors named "Takagishi M"

Objective: Chronic stress can cause hypertension, whereas daily exercise promotes healthy well being through destressing. Although the nucleus of the solitary tract (NTS) is involved in the development of hypertension, the molecular and physiological mechanisms of stress and exercise remain unclear. In this study, we tested whether gene expression in the NTS is altered by stress and daily exercise and whether this is involved in cardiovascular regulation.

View Article and Find Full Text PDF

Motile cilia on ependymal cells that line brain ventricular walls beat in concert to generate a flow of laminar cerebrospinal fluid (CSF). Dyneins and kinesins are ATPase microtubule motor proteins that promote the rhythmic beating of cilia axonemes. Despite common consensus about the importance of axonemal dynein motor proteins, little is known about how kinesin motors contribute to cilia motility.

View Article and Find Full Text PDF

Unlabelled: Ependymal cells, lining brain ventricular walls, display tufts of cilia that beat in concert promoting laminar Cerebrospinal fluid (CSF) flow within brain ventricles. The ciliary axonemes of multiciliated ependymal cells display a 9+2 microtubule array common to motile cilia. Dyneins and kinesins are ATPase microtubule motor proteins that promote the rhythmic beating of cilia axonemes.

View Article and Find Full Text PDF

Background: To present the real-world evidence on the safety and effectiveness of ustekinumab (UST) through 52-week treatment for Crohn's disease (CD) under an analysis of post-market surveillance data in Japan.

Methods: This prospective, post-marketing surveillance study was conducted in 341 patients from 91 medical facilities in Japan. Patients received UST 90 mg injected subcutaneously once every 12 weeks (or every 8 weeks if patients show weak effectiveness) after an induction dose given intravenously.

View Article and Find Full Text PDF

Developing animals absorb nutrients either through the placenta or from ingested food; however, the mechanisms by which embryos use external nutrients for individual organ morphogenesis remain to be elucidated. In this study, we assessed nutrient-dependent thyroid follicle morphogenesis in Xenopus laevis and investigated the role of secreted gastrointestinal (GI) hormones post-feeding. We found that feeding triggers thyroid follicle formation, and the thyroid cells showed transient inactivation of cell proliferation after feeding.

View Article and Find Full Text PDF

The V-shaped arrangement of hair bundles on cochlear hair cells is critical for auditory sensing. However, regulation of hair bundle arrangements has not been fully understood. Recently, defects in hair bundle arrangement were reported in postnatal Dishevelled-associating protein (ccdc88c, alias Daple)-deficient mice.

View Article and Find Full Text PDF
Article Synopsis
  • Ustekinumab, an anti-interleukin-12/23 monoclonal antibody, was studied for its safety and effectiveness in treating Crohn's disease in Japan, with data collected from May 2017 to June 2020 across 91 medical centers.
  • The study involved 341 patients, showing low rates of adverse drug reactions (5.3%) and serious adverse reactions (2.1%), with worsening of Crohn's disease being the most common issue.
  • At 8 weeks, 40% of patients showed clinical response and 48.5% achieved clinical remission, along with significant improvement in disease activity scores; overall, the therapy was deemed effective and safe without new safety concerns.
View Article and Find Full Text PDF

Multiciliated cells (MCCs) in tracheas generate mucociliary clearance through coordinated ciliary beating. Apical microtubules (MTs) play a crucial role in this process by organizing the planar cell polarity (PCP)-dependent orientation of ciliary basal bodies (BBs), for which the underlying molecular basis remains elusive. Herein, we found that the deficiency of Daple, a dishevelled-associating protein, in tracheal MCCs impaired the planar polarized apical MTs without affecting the core PCP proteins, causing significant defects in the BB orientation at the cell level but not the tissue level.

View Article and Find Full Text PDF

The canonical Wnt signaling pathway plays a crucial role in embryonic development, tissue homeostasis and cancer progression. The binding of Wnt ligands to their cognate receptors, the Frizzled (Fzd) family of proteins, recruits Dishevelled segment polarity protein (Dvl) to the plasma membrane and induces its phosphorylation via casein kinase 1 (CK1), which leads to the activation of β-catenin. Previous studies showed that Dishevelled-associating protein with a high frequency of leucine residues (Daple) is an important component of the Wnt signaling pathway and essential for Dvl phosphorylation.

View Article and Find Full Text PDF

Despite common consensus about the importance of planar cell polarity (PCP) proteins in tissue orientation, little is known about the mechanisms used by PCP proteins to promote planar polarization of cytoskeletons within individual cells. One PCP protein Fzd6 asymmetrically localizes to the apical cell membrane of multi-ciliated ependymal cells lining the lateral ventricular (LV) wall on the side that contacts cerebrospinal fluid flow. Individual ependymal cells have planar polarized microtubules that connect ciliary basal bodies (BBs) with the cell cortex of the Fzd side to coordinate cilia orientation.

View Article and Find Full Text PDF

Preference data, such as Likert scale data, are often obtained in questionnaire-based surveys. Clustering respondents based on survey items is useful for discovering latent structures. However, cluster analysis of preference data may be affected by response styles, that is, a respondent's systematic response tendencies irrespective of the item content.

View Article and Find Full Text PDF

Most solid tumors have their own cancer stem cells (CSCs), which are resistant to standard chemo-therapies. Recent reports have described that Wnt pathway plays a key role in self-renewal and tumorigenesis of CSCs. Regarding the Wnt/β-catenin pathway, Dvl (mammalian Disheveled) is an attractive target of drug discovery.

View Article and Find Full Text PDF

Wounds in embryos heal rapidly through contraction of the wound edges. Despite well-recognized significance of the actomyosin purse string for wound closure, roles for other cytoskeletal components are largely unknown. Here, we report that the septin cytoskeleton cooperates with actomyosin and microtubules to coordinate circumferential contraction of the wound margin and concentric elongation of wound-proximal cells in embryos.

View Article and Find Full Text PDF

Amino acid signaling mediated by the activation of mechanistic target of rapamycin complex 1 (mTORC1) is fundamental to cell growth and metabolism. However, how cells negatively regulate amino acid signaling remains largely unknown. Here, we show that interaction between 4F2 heavy chain (4F2hc), a subunit of multiple amino acid transporters, and the multifunctional hub protein girders of actin filaments (Girdin) down-regulates mTORC1 activity.

View Article and Find Full Text PDF

Motile cilia in ependymal cells, which line the cerebral ventricles, exhibit a coordinated beating motion that drives directional cerebrospinal fluid (CSF) flow and guides neuroblast migration. At the apical cortex of these multi-ciliated cells, asymmetric localization of planar cell polarity (PCP) proteins is required for the planar polarization of microtubule dynamics, which coordinates cilia orientation. Daple is a disheveled-associating protein that controls the non-canonical Wnt signaling pathway and cell motility.

View Article and Find Full Text PDF

The tuberomammillary nucleus (TMN) of the posterior hypothalamus has a high density of histaminergic neurons, the projection fibers of which are present in many areas of the brain, including the nucleus tractus solitarius (NTS), which controls arterial pressure (AP). In this study, we investigated whether the TMN-NTS pathway is involved in central cardiovascular regulation. Bicuculline, a gamma-aminobutyric acid type A (GABA) receptor antagonist, was microinjected into the ventral TMN of anesthetized rats and its effects on AP and heart rate (HR) were observed.

View Article and Find Full Text PDF

Although the amygdala is known as a negative emotion center for coordinating defensive behaviors, its functions in autonomic control remain unclear. To resolve this issue, we examined effects on cardiovascular responses induced by stimulation and lesions of the amygdala in anesthetized and free-moving rats. Electrical microstimulation of the central nucleus of the amygdala (CeA) induced a gradual increase in arterial pressure (AP) and heart rate (HR), whereas stimulation of adjacent nuclei evoked a phasic AP decrease.

View Article and Find Full Text PDF

In gastric cancer, the non-canonical Wnt signaling pathway is activated by Wnt5a, which has a critical role in disease outcome. Previous studies have shown that Wnt5a mediates the expression of the extracellular matrix protein laminin γ2 through Rac and JNK activation to promote gastric cancer progression. However, the mechanism of this regulatory pathway has not been completely addressed.

View Article and Find Full Text PDF

Aim: Our previous findings suggest that the nucleus of the solitary tract (NTS), a pivotal region for regulating the set point of arterial pressure, exhibits abnormal inflammation in pre-hypertensive and spontaneously hypertensive rats (SHRs), with elevated anti-apoptotic and low apoptotic factor levels compared with that of normotensive Wistar-Kyoto (WKY) rats. Whether this chronic condition affects neuronal growth and plasticity in the NTS remains unknown. To unveil the characteristics of the neurodevelopmental environment in the NTS of SHRs, we investigated the expression of neurotrophic factors transcripts in SHRs.

View Article and Find Full Text PDF

Aim: The nucleus tractus solitarii (NTS) is a central brainstem structure that plays an important role in regulating cardiovascular homeostasis. In this study, we examined whether H1 receptors in the NTS can control the baroreceptor reflex function by modulating synaptic transmission.

Methods: Cardiac baroreceptor reflex function was assessed before and after the microinjection of 2-pyridylethylamine (10-25 nmol), a histamine H1 receptor-specific agonist, into the NTS of urethane-anaesthetized Wistar rats.

View Article and Find Full Text PDF

The nucleus tractus solitarii (NTS) controls the cardiovascular system during exercise, and alteration of its function may underlie exercise-induced cardiovascular adaptation. To understand the molecular basis of the NTS's plasticity in regulating blood pressure (BP) and its potential contribution to the antihypertensive effects, we characterized the gene expression profiles at the level of the NTS after long-term daily wheel running in spontaneously hypertensive rats (SHRs). Genome-wide microarray analysis was performed to screen for differentially expressed genes in the NTS between exercise-trained (12 wk) and control SHRs.

View Article and Find Full Text PDF

Objectives: The brainstem nucleus of the solitary tract (nucleus tractus solitarii, NTS) is a pivotal region for regulating the set-point of arterial pressure, the mechanisms of which are not fully understood. Based on evidence that the NTS exhibits O2-sensing mechanisms, we examined whether a localized disturbance of blood supply, resulting in hypoxia in the NTS, would lead to an acute increase in arterial pressure.

Methods: Male Wistar rats were used.

View Article and Find Full Text PDF

Axons of histamine (HA)-containing neurons are known to project from the posterior hypothalamus to many areas of the brain, including the nucleus tractus solitarii (NTS), a central brain structure that plays an important role in regulating arterial pressure. However, the functional significance of NTS HA is still not fully established. In this study, we microinjected HA or 2-pyridylethylamine, a HA-receptor H(1)-specific agonist, into the NTS of urethane-anesthetized Wister rats to identify the potential functions of NTS HA on cardiovascular regulation.

View Article and Find Full Text PDF

Objectives: Recent studies have demonstrated that pro-inflammatory molecules such as junctional adhesion molecules-1 are highly expressed in the nucleus tractus solitarii (NTS) of the spontaneously hypertensive rat (SHR), compared to normotensive rats (Wistar-Kyoto rats: WKY), suggesting that the NTS of SHR may exhibit an abnormal inflammatory state. In the present study, we tested whether gene expression of inflammatory markers such as cytokines and chemokines is altered in the NTS of SHR and whether this contributes to the hypertensive phenotype in the SHR.

Methods: We have performed RT Profiler PCR arrays in the NTS of SHR and WKY, which were designed to specifically target major cytokines/chemokines and their receptors.

View Article and Find Full Text PDF

Since the nucleus tractus solitarii (NTS) is a pivotal region for regulating the set-point of arterial pressure, we propose here its role in the development of neurogenic hypertension. Given the findings of recent studies suggesting that the NTS of spontaneously hypertensive rats (SHR) exhibits a specific inflammatory state characterized by leukocyte accumulation within the NTS microvasculature, we hypothesized that gene expression levels of apoptotic factors are altered in the NTS of SHR compared to normotensive Wistar-Kyoto rats (WKY). To test this hypothesis, we used RT(2) Profiler PCR arrays targeting apoptosis-related factors.

View Article and Find Full Text PDF