Affinity maturation increases antigen-binding affinity and specificity of antibodies by somatic hypermutation. Various monoclonal antibodies against (4-hydroxy-3-nitrophenyl)acetyl (NP) were obtained during affinity maturation. Among them, highly matured anti-NP antibodies, such as E11 and E3, possess Cys96 and Cys100 in the complementarity-determining region 3 of the heavy chain, which would form a disulfide bond.
View Article and Find Full Text PDFAntigen-combining sites of the camelid heavy-chain antibody variable domain (VHH) are constructed by three complementarity-determining regions (CDR1, CDR2 and CDR3). We prepared cDNA using mRNA extracted from peripheral lymphocytes of alpacas that had been non-immunized or immunized with human serum albumin (HSA). The VHH gene fragments encoding the amino-terminal half-containing CDR1 as well as CDR2 and the carboxy-terminal half-containing CDR3 were amplified independently by PCR, and then full-length VHH gene fragments were generated by overlap extension PCR and cloned into the phagemid vector.
View Article and Find Full Text PDFSomatic hypermutation (SHM) is one of the driving forces that increases antibody (Ab) affinity. We studied the effects of SHM on thermostability and affinity using three single-chain Fv fragments (scFvs) of anti-(4-hydroxy-3-nitrophenyl)acetyl Abs, namely 9TG, 9T7, and E11. 9TG has a germline structure that lacks SHM and is an ancestor of 9T7 with 11 mutations.
View Article and Find Full Text PDFAntibodies possessing high affinity and specificity are desired as therapeutic reagents and biosensor materials. Such antibodies are often obtained from immunized animals through the process referred to as affinity maturation where antibody affinity increases with time after immunization. Somatic hypermutation (SHM) was shown to be involved in this process; however, structural basis of affinity maturation has not well been understood yet.
View Article and Find Full Text PDFIgM antibodies (Abs) are thought to play a major role in humoral immunity but only at the early stage of the primary immune response. However, two subsets of IgM memory B cells (MBCs), one with high affinity gained by means of multiple somatic hypermutation (SHM) and the other with low affinity and no SHMs, are generated through the germinal center (GC)-dependent and GC-independent (non-GC) pathway, respectively, after immunization with (4-hydroxy-3-nitrophenyl)acetyl (NP)-chicken γ-globulin. Surprisingly, an analysis of antibody-secreting cells reveals that a large amount of anti-NP IgM Ab with few SHMs is secreted during the recall response, indicating that only non-GC MBCs have terminal differentiation potential.
View Article and Find Full Text PDFImmune response to T-cell-dependent antigens is highly dynamic; several B-cell clones responsible for antibody production appear alternately during immunization. It was previously shown that at least two-types of antibodies are secreted after immunization with (4-hydroxy-3-nitrophenyl)acetyl (NP); one has Tyr and another has Gly at position 95 of the heavy chain (referred to as Tyr95- and Gly95-type). The former appeared at an early stage, while the latter appeared at a late stage, i.
View Article and Find Full Text PDFDNA Repair (Amst)
February 2017
Somatic hypermutation (SHM) of immunoglobulin (Ig) genes is triggered by the activity of activation-induced cytidine deaminase (AID). AID induces DNA lesions in variable regions of Ig genes, and error-prone DNA repair mechanisms initiated in response to these lesions introduce the mutations that characterize SHM. Error-prone DNA repair in SHM is proposed to be mediated by low-fidelity DNA polymerases such as those that mediate trans-lesion synthesis (TLS); however, the mechanism by which these enzymes are recruited to AID-induced lesions remains unclear.
View Article and Find Full Text PDFProtein structure dynamics are critical for understanding structure-function relationships. An antibody can recognize its antigen, and can evolve toward the immunogen to increase binding strength, in a process referred to as affinity maturation. In this study, a single-chain Fv (scFv) antibody against (4-hydroxy-3-nitrophenyl)acetyl, derived from affinity matured type, C6, was designed to comprise the variable regions of light and heavy chains connected by a (GGGGS)3 linker peptide.
View Article and Find Full Text PDFAnti-(4-hydroxy-3-nitrophenyl)acetyl (NP) antibodies bearing λ1 chains are known to possess fine specificity, referred to as heterocliticity, which causes these antibodies to bind to hapten analogues such as (4-hydroxy-3-iodo-5-nitrophenyl)acetyl (NIP) and (4-hydroxy-3,5-dinitrophenyl)acetyl (NNP) with higher affinity than to the autologous hapten, NP. They also show preferential binding to the phenolate form of hapten than to the phenolic form. We address here the question of whether affinity maturation accompanies in the fine specificity of these antibodies by analyzing the interaction between NP1-, NIP1-, or NNP1-hen egg lysozyme and anti-NP antibodies that possess different association constants to NP using a surface plasmon resonance biosensor.
View Article and Find Full Text PDFDuring a T cell-dependent immune response, B cells undergo clonal expansion and selection and the induction of isotype switching and somatic hypermutation (SHM). Although somatically mutated IgM(+) memory B cells have been reported, it has not been established whether they are really high affinity B cells. We tracked (4-hydroxy-3-nitrophenyl) acetyl hapten-specific GC B cells from normal immunized mice based on affinity of their B cell receptor (BCR) and performed BCR sequence analysis.
View Article and Find Full Text PDFStudies on the structural basis of antibody affinity maturation have been carried out by measuring the affinity of secreted antibodies, and information on structures has often been obtained from nucleotide sequences of BCRs of memory B cells. We considered it important to establish whether the repertoire of secreted antibodies from plasma cells is really in accord with that of BCRs on memory B cells at the same time points post-immunization. We isolated plasma cells secreting antibodies specific to (4-hydroxy-3-nitrophenyl)acetyl (NP) hapten by affinity matrix technology using biotin-anti-CD138 and streptavidin-NP-allophycocyanin, to which anti-NP antibodies secreted by autologous plasma cells bound preferentially.
View Article and Find Full Text PDFWe developed a method to detect and isolate plasma cells that produce antigen-specific antibodies. An affinity matrix of hapten was constructed on a cell surface, and subsequent incubation allowed cells to secrete antibodies. Anti-hapten antibodies preferentially bound to the affinity matrix on the cells from which they were secreted.
View Article and Find Full Text PDFClass-switched memory B cells, which are generated through the processes of somatic hypermutation (SHM) and affinity-based selection in germinal centers, contribute to the production of affinity-matured IgG antibodies in the secondary immune response. However, changes in the affinity of IgM antibodies during the immune response have not yet been studied, although IgM(+) memory B cells have been shown to be generated. In order to understand the relationship between IgM affinity and the recall immune response, we prepared hybridomas producing anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) IgM antibodies from C57BL/6 mice and from activation-induced cytidine deaminase (AID)-deficient mice.
View Article and Find Full Text PDFFunctional proteins like antibody, cytokine and growth factor have been widely used for basic biological research, diagnosis and cancer therapy. Particularly, antibody drugs as attractive biopharmaceuticals will be expected to create an enormous new market. Chinese hamster ovay (CHO) cells are being increasingly used in industry for the production of recombinant therapeutic proteins including antibody drugs.
View Article and Find Full Text PDFCohesion is essential for the identification of sister chromatids and for the biorientation of chromosomes until their segregation. Here, we have demonstrated that an RNA-binding motif protein encoded on the X chromosome (RBMX) plays an essential role in chromosome morphogenesis through its association with chromatin, but not with RNA. Depletion of RBMX by RNA interference (RNAi) causes the loss of cohesin from the centromeric regions before anaphase, resulting in premature chromatid separation accompanied by delocalization of the shugoshin complex and outer kinetochore proteins.
View Article and Find Full Text PDFIn response to T cell-dependent antigens, B cells proliferate extensively to form germinal centres (GC), and then differentiate into memory B (B(mem)) cells or long-lived plasma cells (LLPCs) by largely unknown mechanisms. Here we show a new culture system in which mouse naïve B cells undergo massive expansion and isotype switching, and generate GC-phenotype B (iGB) cells. The iGB cells expressing IgG1 or IgM/D, but not IgE, differentiate into B(mem) cells in vivo after adoptive transfer and can elicit rapid immune responses with the help of cognate T cells.
View Article and Find Full Text PDFWe searched for memory B cells responsible for high-affinity anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) antibody production by C57BL/6 mice immunized with NP-chicken γ-globulin (CGG), using flow cytometry. We first prepared transfectants expressing B-cell antigen receptor (BCR) of known affinity as a memory B-cell model as well as NP-allophycocyanin (APC) of different NP valences, NP(lo), NP(med) and NP(hi). We then used the latter as probes capable of distinguishing BCR affinities: NP(lo)-APC bound to BCRs with an affinity higher than 3.
View Article and Find Full Text PDFMonoclonal antibodies (mAbs) were prepared to analyse the conformation of human serum albumin (HSA) and its non-enzymatic glycation (NEG) products. We first determined the epitopes of the mAbs using HSA subdomains expressed on the surface of yeast. Each mAb was classified as belonging to one of two groups; Type I mAbs which recognized a single subdomain structure and Type II mAbs which bound to plural subdomains.
View Article and Find Full Text PDFTwo groups of anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) Abs each possessing a different amino acid, Tyr or Gly, at position 95, appeared respectively at early and late stages of immunization. The early Abs predominantly harbored Tyr95 and were referred to as the Tyr95 type. These had ∼100-fold lower ceiling affinity than the late Abs harboring Gly95, which were referred to as the Gly95 type.
View Article and Find Full Text PDFTo evaluate the conformation of reduced HEL, the monoclonal antibodies HyC1 and HyC2, which recognize different conformational epitopes on native hen egg lysozyme (HEL), were used, and the kinetics of their interactions with native HEL, S-1,2-dicarboxyethylated HEL (DCE-HEL), and carboxymethylated Cys6 and Cys127 HEL (CM(6,127)-HEL) were assessed using surface plasmon resonance. Although their association rate constants differed 10(5)-fold, their dissociation rate constants were essentially the same, suggesting that DCE-HEL and CM(6,127)-HEL possess conformations similar to that of native HEL when they bind antibodies. We considered that the ratio of the association rate constant of reduced HEL to native HEL represents the proportion of the native format determinant in equilibrium.
View Article and Find Full Text PDFThe effect of antibody affinity on molecular forms of immune complexes was investigated by measuring antigen-antibody interactions using surface plasmon resonance (SPR), electrospray ionization time-of-flight mass spectrometry under non-denaturing conditions (MS), analytical ultracentrifugation (AUC), and transmission electron microscopy (TEM). (4-Hydroxy-3-nitrophenyl)acetic acid (NP) of different valences was conjugated to bovine serum albumin (BSA) and these conjugates were used as antigens. In the interaction between N1G9, a low affinity antibody, and NP(7)-BSA, a 1:1 immune complex was detected as the major product and higher molecular weight complexes were not obtained by any of the methods employed.
View Article and Find Full Text PDFDNA polymerase eta (POLH) is required for the generation of A:T mutations during the somatic hypermutation of Ig genes in germinal center B cells. It remains unclear, however, whether POLH is a limiting factor for A:T mutations and how the absence of POLH might affect antibody affinity maturation. We found that the heterozygous Polh+/- mice exhibited a significant reduction in the frequency of A:T mutations in Ig genes, with each type of base substitutions at a level intermediate between the Polh+/+ and Polh(-/-) mice.
View Article and Find Full Text PDFRibosomal protein S6 (rpS6) is known to relate to cell proliferation. Our recent proteome analysis of human metaphase chromosomes revealed the enrichment of rpS6 during mitosis. Here, structure, localization and molecular assembly in vitro and in vivo of a human rpS6, were examined using antibodies (Abs) prepared by immunizing rabbits with synthetic peptides.
View Article and Find Full Text PDFWe examined the immune response of Balb/c mice to antigens prepared by conjugating 2-phenyloxazolone (phOx) to a foreign protein, ovalbumin (OVA), or a self-protein, mouse serum albumin (MSA), in order to study how these chemical modifications would affect immune recognition. We found that anti-OVA antibodies and CD4(+) T cells produced by OVA immunization reacted with OVA as well as with phOx-OVA. Anti-phOx antibodies were produced by phOx-OVA immunization and, interestingly, T cells from these mice reacted only with phOx-OVA but not with the intact OVA.
View Article and Find Full Text PDF