This study is the first to demonstrate the startup of a pilot-scale single-stage nitrogen removal using anammox and partial nitritation (SNAP) reactor utilizing marine anammox bacteria. A complete mixing type reactor, continuously fed with waste brine obtained from a natural gas plant (salinity 3%, NH-N 130-180 mg/L) and having an effective volume of 2 m, achieved stable operation at temperatures of 20-30°C with a maximum nitrogen removal rate of 1.43 kg-N/m/day.
View Article and Find Full Text PDFThe goal of this study was to develop a startup strategy for a high-rate anaerobic ammonium oxidation (anammox) reactor to treat waste brine with high concentrations of ammonium from a natural gas plant. An upflow anaerobic sludge blanket (UASB) anammox reactor with an effective volume of 294 L was fed continuously with waste brine with a salinity of 3% and a NH concentration of 180 mg-N/L, as well as a NaNO solution. By inoculating a methanogenic granular biomass as a biomass carrier, the reactor attained the maximum volumetric nitrogen removal rate (NRR) of 10.
View Article and Find Full Text PDFA novel nitritation method based on the addition of inorganic carbon (IC) was verified using an airlift-fluidized bed reactor packed with sponge cubes. A continuous-treatment experiment demonstrated that the type of nitrification-nitrite or nitrate accumulation-could be controlled by the addition of different alkalinity sources (NaHCO(3) or NaOH, respectively). The maximum rate of ammonia oxidation at 30 degrees C was 2.
View Article and Find Full Text PDFThe first full-scale anammox reactor in the world was started in Rotterdam (NL). The reactor was scaled-up directly from laboratory-scale to full-scale and treats up to 750 kg-N/d. In the initial phase of the startup, anammox conversions could not be identified by traditional methods, but quantitative PCR proved to be a reliable indicator for growth of the anammox population, indicating an anammox doubling time of 10-12 days.
View Article and Find Full Text PDFBioresour Technol
October 2007
The aim of this work was to examine the applicability of the anaerobic ammonium oxidation (anammox) process to three kinds of low BOD/N ratio wastewaters from animal waste treatment processes in batch mode. A rapid decrease of NO(2)(-) and NH(4)(+) was observed during incubation with wastewaters from AS and UASB/trickling filter and their corresponding control artificial wastewaters. This nitrogen removal resulted from the anammox reaction, because the ratio of removed NO(2)(-) and NH(4)(+) was close to the theoretical ratio of the anammox reaction.
View Article and Find Full Text PDF