Publications by authors named "Takaaki Oteki"

Background/aims: Therapeutic results for patients with hepatitis C and B complex or patients with genotype lb high viral load treatment-resistant hepatitis C are still not sufficient. The therapeutic effects of concomitant treatment of such intractable patients with double-filtration plasmapheresis (DFPP) and pegylated interferon (PEG-IFN) alpha 2a/ribavirin (RBV) therapy were investigated.

Methodology: The subjects were one patient with genotype 2a hepatitis C combined with liver cirrhosis by HBV and 12 patients with retreated hepatitis C (genotype 2a: two patients, genotype 1b: 10 patients).

View Article and Find Full Text PDF

Although it has been reported that dietary lycopene, the main carotenoid in tomato, improved drug-induced nephropathy, there are no reports on the effect of orally administered lycopene on the in vivo renal reducing (i.e., antioxidant) ability.

View Article and Find Full Text PDF

The effect of the calcium channel blocker azelnidipine on the redox status of a murine hypertension model was analyzed and imaged using in vivo low frequency electron paramagnetic resonance (EPR). A murine two kidney-one clip (2K1C) hypertension model was produced by a clipping of the right renal artery. The resulting hypertensive mice were treated with low-dose azelnidipine (1 mg/kg/d), with high-dose azelnidipine (3 mg/kg/d) or without azelnidipine (HT group).

View Article and Find Full Text PDF

It is well known that oxidative stress is related to the pathogenesis of adriamycin (ADR) nephropathy. However, it is unclear how nitric oxide (NO) is associated with the pathophysiological process after ADR administration. The NO level in a kidney homogenate was assayed by electron paramagnetic resonance (EPR) spectrometry using a direct in vivo NO trapping technique after ADR administration.

View Article and Find Full Text PDF

Intrinsic reactive oxygen species (ROS) in a rat model of human minimal change nephropathy were detected directly using an in vivo electron paramagnetic resonance (EPR) method with 1-acetoxy-3-carbamoyl-2,2,5,5-tetramethylpyrrolidine (ACP) in real time. The nephrosis was induced by the intravenous administration of 75 mg/kg of puromycin aminonucleoside (PAN). It was found that ROS in the kidney were increased 1 h after the administration of PAN.

View Article and Find Full Text PDF

We report a 17-year-old male patient with tubulointerstitial nephritis and uveitis (TINU) associated with hyperthyroidism. He presented with a 2-month history of fatigue, loss of appetite, low-grade fever, and a 12-kg weight loss when he was admitted to our hospital. He had iritis, which was complicated by fibrin in the anterior chamber, diagnosed by slit-lamp examination.

View Article and Find Full Text PDF

Reactive oxygen species play an important role in adriamycin (ADR) nephropathy. We showed by in vivo electron paramagnetic resonance (EPR) that renal reducing ability (RRA) declined on the 7th day after ADR administration. Proteinuria appeared after the decline in RRA.

View Article and Find Full Text PDF

A rat model for human minimal change nephropathy was obtained by the intravenous injection of adriamycin (ADR) at 5 mg/kg. By using an in vivo electron paramagnetic resonance (EPR) spectrometer operating at 700 MHz, the temporal changes in signal intensities of a nitroxide radical, 4-hydroxyl-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), in the kidneys of rats with ADR nephropathy were investigated. The decay rate of the EPR signal intensity obtained in the kidney is indicative of the renal reducing ability.

View Article and Find Full Text PDF

Oxidative stress during ischemia-reperfusion acute renal failure (IR-ARF) was noninvasively evaluated with in vivo electron paramagnetic resonance (EPR) imaging. Female ICR mice underwent left nephrectomy and 30-min ischemia-reperfusion of the right kidney. Oxidative stress was evaluated as organ reducing activity with the half-lives of the spin probe 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (carbamoyl-PROXYL) using 1) conventional L-band EPR, which showed organ-reducing activity in the whole abdominal area; and 2) EPR imaging, which showed semiquantitative but organ-specific reducing activity.

View Article and Find Full Text PDF

Nitric oxide (NO) is a very potent regulator of intrarenal hemodynamics and is thought to be an important factor in the deterioration of renal function. Several polymorphisms of the endothelial NO synthase (eNOS) gene have been reported. For instance, tandem 27-bp repeats in intron 4 of the eNOS gene are polymorphic, i.

View Article and Find Full Text PDF

The recent development of electron paramagnetic resonance (EPR) permits its application for in vivo studies of nitric oxide (NO). In this study, we tried to obtain 3D EPR images of endogenous NO in the abdominal organs of lipopolysuccaride (LPS) treated mice. Male ICR mice, each weighing about 30 g, received 10 mg/kg of LPS intraperitoneally.

View Article and Find Full Text PDF