The rheological properties of a polyamide (PA) resin with low crystallinity were modified by melt-mixing it with a small amount of an alternative -olefin-maleic anhydride copolymer as a reactive compound. Because PA has a low melting point, rheological characterization was performed over a wide temperature range. Owing to the reaction between PA and the alternative -olefin-maleic anhydride copolymer, the blend sample behaved as a long-chain branched polymer in the molten state.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
October 2024
The social amoeba Polysphondylium violaceum uses chemoattractants different from those of Dictyoctelium discoideum for cell aggregation. However, the detailed mechanisms in P. violaceum remain unknown.
View Article and Find Full Text PDFBackground: Cyclic di-guanylate (c-di-GMP), synthesized by diguanylate cyclase, is a major second messenger in prokaryotes, where it triggers biofilm formation. The dictyostelid social amoebas acquired diguanylate cyclase (dgcA) by horizontal gene transfer. Dictyostelium discoideum (Ddis) in taxon group 4 uses c-di-GMP as a secreted signal to induce differentiation of stalk cells, the ancestral somatic cell type that supports the propagating spores.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
October 2022
The effects of pressure and shear rate on the miscibility of binary blends comprising bisphenol-A polycarbonate (PC) and low molecular weight poly(methyl methacrylate) (PMMA) were investigated using a capillary rheometer. Both pressure and shear rate affected the miscibility. The examination of an extruded strand of the blend provided information about the cause of the phase change.
View Article and Find Full Text PDFMajor phenotypic innovations in social amoeba evolution occurred at the transition between the Polysphondylia and group 4 Dictyostelia, which comprise the model organism Dictyostelium discoideum, such as the formation of a new structure, the basal disk. Basal disk differentiation and robust stalk formation require the morphogen DIF-1, synthesized by the polyketide synthase StlB, the des-methyl-DIF-1 methyltransferase DmtA, and the chlorinase ChlA, which are conserved throughout Dictyostelia. To understand how the basal disk and other innovations evolved in group 4, we sequenced and annotated the Polysphondylium violaceum (Pvio) genome, performed cell type-specific transcriptomics to identify cell-type marker genes, and developed transformation and gene knock-out procedures for Pvio.
View Article and Find Full Text PDF4-Methyl-5-pentylbenzene-1,3-diol (MPBD), a product of the polyketide synthase SteelyA, is a signaling molecule that regulates Dictyostelium discoideum development. During early development, MPBD controls chemotactic cell aggregation by regulating the expression of genes in the cAMP signaling pathway; however, during culmination at late development, it induces spore maturation. In the present study, we analyzed the effects of MPBD, its derivatives, and a putative MPBD-derived metabolite on developmental defects in the MPBD-less stlA null mutant.
View Article and Find Full Text PDFThe polyketide MPBD (4-methyl-5-pentylbenzene-1, 3-diol) is produced by the polyketide synthase SteelyA (StlA) in Dictyostelium discoideum. MPBD is required for appropriate expression of cAMP signalling genes involved in cell aggregation and additionally induces the spore maturation at the fruiting body stage. The MPBD signalling pathway for regulation of cell aggregation is unknown, but MPBD effects on sporulation were reported to be mediated by the G-protein coupled receptor CrlA in D.
View Article and Find Full Text PDFBackground: In our previous study we found that the expression of stlA showed peaks both in the early and last stages of development and that a product of SteelyA, 4-methyl-5-pentylbenzene-1,3-diol (MPBD), controlled Dictyostelium spore maturation during the latter. In this study we focused on the role of SteelyA in early stage development.
Principal Findings: Our stlA null mutant showed aggregation delay and abnormally small aggregation territories.
Fatty acids are fundamental cellular components, and provide essential building blocks for membrane biosynthesis. Although the use of gene knockout mutants is a robust method for examining the function of specific cellular metabolic networks, fatty acid synthase knockout mutants are extremely difficult to isolate. In the Dictyostelium discoideum genome, we found two putative fatty acid synthase genes, and we created a knockout mutant for one of them to examine the physiological consequences.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
July 2014
4-Methyl-5-pentylbenzene-1,3-diol (MPBD), a product of SteelyA enzyme, controls Dictyostelium spore maturation. Since the expression of stlA split the in early and terminal stages, we cannot exclude the possibility that MPBD regulates spore differentiation from the early stage by creating a bias between the cells. 1-(3,5-Dichloro-2,6-dihydroxy-4-methoxyphenyl) hexan-1-on (DIF-1), a product of SteelyB, was identified as the major stalk cell inducer by in vitro assay, but in vivo assay revealed that DIF-1 induces only prestalkB (pstB) and prestalkO (pstO) cells and, that the major prestalkA (pstA) cells differentiated without DIF-1.
View Article and Find Full Text PDFThe genome of Dictyostelium contains two novel hybrid-type polyketide synthases (PKSs) known as 'Steely'; the Steely enzyme is formed by the fusion of type I and type III PKSs. One of these enzymes, SteelyB, is known to be responsible for the production of the stalk cell-inducing factor DIF-1 in vivo. On the other hand, the product(s) and expression pattern of SteelyA are not clearly understood, because there are two different reports associated with the in vitro products of SteelyA and its expression pattern.
View Article and Find Full Text PDF