The cellulosome is a supramolecular multienzyme complex formed via species-specific interactions between the cohesin modules of scaffoldin proteins and the dockerin modules of a wide variety of polysaccharide-degrading enzymes. Here, we report a comparative analysis of cellulosomes prepared from the thermophilic anaerobic bacteria Clostridium (Ruminiclostridium) clariflavum DSM 19732 and Clostridium (Ruminiclostridium) thermocellum ATCC 27405 grown on delignified rice straw. The results indicate that the isolated C.
View Article and Find Full Text PDFSerine-type phage integrases catalyze unidirectional site-specific recombination between the attachment sites, attP and attB, in the phage and host bacterial genomes, respectively; these integrases and DNA target sites function efficiently when transferred into heterologous cells. We previously developed an in vivo site-specific genomic integration system based on actinophage TG1 integrase that introduces ∼2-kbp DNA into an att site inserted into a heterologous Escherichia coli genome. Here, we analyzed the TG1 integrase-mediated integrations of att site-containing ∼10-kbp DNA into the corresponding att site pre-inserted into various genomic locations; moreover, we developed a system that introduces ∼10-kbp DNA into the genome with an efficiency of ∼10(4) transformants/μg DNA.
View Article and Find Full Text PDF