Publications by authors named "Takaaki Ishigami"

Leucine (Leu), an essential amino acid, is known to stimulate protein synthesis in the skeletal muscle via mTOR complex 1 (mTORC1) activation. However, the intrinsic contribution of other amino acids to Leu-mediated activation of mTORC1 signaling remains unexplored. This study aimed to identify amino acids that can promote mTORC1 activity in combination with Leu and to assess the effectiveness of these combinations in vitro and in vivo.

View Article and Find Full Text PDF

A novel amorphous solid dispersion (ASD) of poorly water-soluble nobiletin (Nob) with highly water-soluble methyl hesperidin (MeHes) was developed. Mixtures of Nob and excipients (MeHes, cellulose derivatives, and synthetic polymers) were processed by hot-melt extrusion (HME). Powder X-ray diffraction analysis proved that most of the HME products were fully amorphized.

View Article and Find Full Text PDF

We investigated the effect of organic acids such as mandelic acid (MA) and tartaric acid (TA) on the adsorption behavior of both histidine (His) and propranolol (PPL) onto liposomes. A cationic and heterogeneous liposome prepared using 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/sphingomyelin (SM)/3β-[N-(N',N'-dimethylaminoethane)carbamoyl]cholesterol (DC-Ch) in a ratio of (4/3/3) showed the highest adsorption efficiency of MA and TA independent of chirality, while neutral liposome DOPC/SM/cholesterol = (4/3/3) showed low efficiency. As expected, electrostatic interactions were dominant in MA or TA adsorption onto DOPC/SM/DC-Ch = (4/3/3) liposomes, suggesting that organic acids had adsorbed onto SM/DC-Ch-enriched domains.

View Article and Find Full Text PDF

In order to investigate the interaction of hydrophilic molecules with liposomal membranes, we employed 1-(4-(trimethylamino)phenyl)-6-phenyl-1,3,5-hexatriene and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(5-dimethylamino-1-naphthalenesulfonyl) as fluorescent probes to monitor the surface regions of the membrane, and the results for various liposomes were plotted in correlation diagrams. According to the formation of a variety of phase states, different tendencies of decreasing surface hydrophobicity were observed in the liposomes that were modified with high concentrations of cholesterol or in the liposomes that were composed of ternary components. These liposomes, with hydrophobic surfaces, also showed preferential adsorption of l-histidine (l-His), and the hydrophobicity of the liposomal membrane at the surface changed during l-His adsorption regardless of the initial liposomal properties.

View Article and Find Full Text PDF

We investigated the key factors that affect enantioselective adsorption of ibuprofen (IBU) on a liposome membrane by changing its lipid composition: the liposome membrane shows different membrane fluidity, surface charge, content of chiral components, and heterogeneity (nanodomain). Nonspecific interactions (hydrophobic and electrostatic) were revealed to be an important factor in enhancing the adsorbed amount of IBU, based on adsorption experiments carried out using single lipids (DPPC, DMPC, DOPC, and DLPC) and positively charged liposomes (DOTAP and liposome containing DC-Ch). Furthermore, control of the boundary edge (i.

View Article and Find Full Text PDF

Herein, we show that the L-proline (L-Pro)-catalyzed Michael addition of trans-β-nitrostyrene and acetone can proceed in "water" using liposome membranes and that the membrane fluidity and polarity are major controlling factors for this reaction. The highest conversion and rate constant of the reaction within the liposomes was achieved with the 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dipalmitoyl-3-trimethylammoniumpropane (DPTAP) system. The catalytic activity of L-Pro in the liposome suspension was found to be comparable to that in a DMSO system.

View Article and Find Full Text PDF

We prepared liposome immobilized hydrogels (LI-gels) for analysis and separation of chiral molecules, to overcome the drawbacks of liposomes such as low stability, and difficulties with handling and isolation from sample solutions. The amounts of liposomes in the hydrogels were larger than those in other solid matrices reported previously. The liposome morphology was intact, and its original properties, such as fluidity and phase transition behaviors, were preserved.

View Article and Find Full Text PDF

In this study, we demonstrated that liposomes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) can recognize several l-amino acids, but not their d-enantiomers, by analyzing their adsorptive behavior and using circular dichroism spectroscopy. Changes in liposomal membrane properties, determined based on fluorescent probe analysis and differential scanning calorimetry, were induced by l-amino acid binding. UV resonance Raman spectroscopy analysis suggested that the chiral recognition was mediated by electrostatic, hydrophobic, and hydrogen bond interactions, where the recognition site could therefore be constructed on the DPPC membrane.

View Article and Find Full Text PDF

We fabricated a simple yet robust microfluidic platform with monolithically integrated hierarchical apertures. This platform showed efficient diffusive mixing of the introduced lipids through approximately 8000 divisions with tiny pores (~5 μm in diameter), resulting in massive, real-time production of various cargo-carrying particles via multi-hydrodynamic focusing.

View Article and Find Full Text PDF