Publications by authors named "Takaaki Ikuno"

The stoichiometric conversion of methane to methanol by Cu-exchanged zeolites can be brought to highest yields by the presence of extraframework Al and high CH chemical potentials. Combining theory and experiments, the differences in chemical reactivity of monometallic Cu-oxo and bimetallic Cu-Al-oxo nanoclusters stabilized in zeolite mordenite (MOR) are investigated. Cu-L edge X-ray absorption near-edge structure (XANES), infrared (IR), and ultraviolet-visible (UV-vis) spectroscopies, in combination with CH oxidation activity tests, support the presence of two types of active clusters in MOR and allow quantification of the relative proportions of each type in dependence of the Cu concentration.

View Article and Find Full Text PDF
Article Synopsis
  • Cu-exchanged mordenite (MOR) zeolites can efficiently convert methane into methanol through a three-step process using oxygen as an oxidant, with MOR showing the highest yields among various zeolite types.
  • The effectiveness of MOR is linked to its unique micropore structure, which facilitates the formation of active Cu-oxo nanoclusters that can efficiently activate methane.
  • Advanced techniques like XANES and simulations helped confirm the structure of the active Cu-Al-oxo cluster, indicating its capability to oxidize two methane molecules per cluster under ambient conditions.
View Article and Find Full Text PDF

Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal-organic framework (MOF) NU-1000 are active for oxidation of methane to methanol under mild reaction conditions. Analysis of chemical reactivity, in situ X-ray absorption spectroscopy, and density functional theory calculations are used to determine structure/activity relations in the Cu-NU-1000 catalytic system. The Cu-loaded MOF contained Cu-oxo clusters of a few Cu atoms.

View Article and Find Full Text PDF

Organic structure-directing agents (OSDAs) have been widely used for the synthesis of zeolites. In most cases, OSDAs are occluded in zeolites as an isolated cation or molecule geometrically fitted within the zeolite cavities. This is not the case for zeolite beta synthesized by using tetraethylammonium (TEA(+)) cation as an OSDA, in which a cluster/aggregate of ca.

View Article and Find Full Text PDF

Core-shell structured mesoporous silica nanoparticles (MSNs) with different pore characteristics in the cores and shells have been prepared by the regrowth method. Adding a silica source to a dispersion of presynthesized silica-surfactant composite nanoparticles with two-dimensional hexagonal mesostructures results in regrowth in preference to generation of new particles. Core-shell MSNs with bimodal porosities are easily obtained by adding a pore-expanding agent, 1,3,5-trimethylbenzene, in either the core or shell formation step.

View Article and Find Full Text PDF

A versatile method for the formation of monodisperse, bridged silsesquioxane nanoparticles with hollow interiors and porous shells has been developed using silica nanospheres as templates. Tunable size and shell thickness, as well as high surface areas and large pore volumes of the hollow particles, allow for practical application of these nanoparticles in many fields.

View Article and Find Full Text PDF