Adipose tissue dysfunction is a key feature of metabolic syndrome, which increases the risk of periodontitis, an inflammatory disease induced by bacteria that affects the gingiva and other components of periodontal tissue. Recent studies indicate that molecules from inflamed periodontal tissue contribute to adipose tissue dysfunction. However, the cellular mechanisms and interactions between adipose tissue and gingiva driving the progression of metabolic and periodontal conditions remain unclear.
View Article and Find Full Text PDFCell culture inserts offer an in vivo-like microenvironment to investigate cell-cell interactions between co-cultivated cells. However, it is unclear if types of inserts affect cell crosstalk. Here, we developed an environment-friendly cell culture insert, XL-insert, which can reduce plastic waste with lower cost.
View Article and Find Full Text PDFThe aim of this study is to investigate the repressive effects of enzyme-digested edible bird's nest (EBND) on the combination of arid environment and UV-induced intracellular oxidative stress, cell death, DNA double-strand breaks (DSBs) and inflammatory responses in human HaCaT keratinocytes and three-dimensional (3D) epithelium equivalents. An oxygen radical antioxidant capacity assay showed that EBND exhibited excellent peroxyl radical scavenging activity and significantly increased cellular antioxidant capacity in HaCaT cells. When EBND was administered to HaCaT cells and 3D epitheliums, it exhibited significant preventive effects on air-drying and UVA (Dry-UVA)-induced cell death and apoptosis.
View Article and Find Full Text PDFGut microbial lipopolysaccharides (LPS)-induced inflammatory responses in adipose tissue are associated with the dysfunction of adipocytes, insulin resistance and the development of metabolic syndrome. The aim of this study is to investigate (1) the effects of LPS on the differentiation and inflammatory responses of THP-1 monocytes and OP9 preadipocytes under serum free conditions and (2) the repressive effects of enzyme-digested Colla Corii Asini (CCAD) and fish gelatin (FGD) on LPS-induced inflammatory responses in THP-1 macrophages and OP9 adipocytes. Immunofluorescence and oil red O staining showed that a serum free medium supplied with phorbol 12-myristate 13-acetate (PMA) could induce differentiation and lipid accumulation in THP-1 cells as well as OP9 cells.
View Article and Find Full Text PDFTo elucidate the mechanism underlying the failure of root formation after irradiation, we established a method of local irradiation of the molar tooth germ and demonstrated that radiation directly affected dental root development. In the current study, to locally irradiate the lower first molars of 5-day-old C57BL/6J mice, we used lead glass containing a hole as a collimator. We confirmed that our local irradiation method targeted only the tooth germ.
View Article and Find Full Text PDFElucidating the mechanisms underlying human pain sensation requires the establishment of an in vitro model of pain reception comprising human cells expressing pain-sensing receptors and function properly as neurons. Human dental pulp stem cells (hDPSCs) are mesenchymal stem cells and a promising candidate for producing human neuronal cells, however, the functional properties of differentiated hDPSCs have not yet been fully characterized. In this study, we demonstrated neuronal differentiation of hDPSCs via both their expression of neuronal marker proteins and their neuronal function examined using Ca2+ imaging.
View Article and Find Full Text PDFUltraviolet-A UVA) irradiation induces harmful effects on skin cells and accelerates skin aging through oxidative stress. In this study, the effects of a hydrogen-generating silica material named ULH-002 against UVA injuries in human cells and 3D skin equivalents were investigated. The oxygen radical absorption capacity (ORAC) assay showed that both freshly prepared ULH-002 solutions and 7-day-old solutions exhibited equal peroxyl radical (ROO·) scavenging activities concentration-dependently.
View Article and Find Full Text PDFBiophys Physicobiol
September 2020
As human-origin cells, human dental pulp stem cells (hDPSCs) are thought to be potentially useful for biological and medical experiments. They are easily obtained from lost primary teeth or extracted wisdom teeth, and they are mesenchymal stem cells that are known to differentiate into osteoblasts, chondrocytes, and adipocytes. Although hDPSCs originate from neural crest cells, it is difficult to induce hDPSCs to differentiate into neuron-like cells.
View Article and Find Full Text PDFBackground: Human dental pulp stem cells (DPSCs) are a readily accessible and promising cell source for regenerative medicine. We recently reported that a xenogeneic serum-free culture medium (XFM) is preferable to fetal bovine serum-containing culture medium for ex vivo expansion of DPSCs; however, we observed that, upon reaching overconfluence, XFM cells developed a multilayered structure and frequently underwent apoptotic death, resulting in reduced cell yield. Therefore, we focused on optimization of the XFM culture system to avoid the undesirable death of DPSCs.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2019
Tooth formation is accomplished under strict genetic programs. Although patients with chromosome 12q14 aberration shows tooth phenotype including the size and eruption timing with bone growth anomaly, its etiology is uncertain. Here, we examined expression of Hmga2, which is encoded at chromosome 12q14, in mouse tooth germs and analyzed the involvement in lower first molar (M1) and mandibular bone development.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) as a source for regenerative medicine are now the subject of much clinical attention. There are high expectations due to their safety, low tumorigenic risk, and low ethical concerns. MSC therapy has been approved for acute graft-versus host diseases since 2015.
View Article and Find Full Text PDFCalcium hydrogen phosphate with a hydroxyapatite-like surface (CHP-HA) is a novel synthesized compound designed to overcome the limitations of bioactive ceramics. It was originally applied as nano-sized HA strips covering core plates to enhance the degree of interfacial attachment. The objective of the present study was to examine the cellular attachment, proliferation, and osteogenic differentiation of periodontal ligament stem cells (PDLSCs) on a CHP-HA substrate in comparison with conventional nanohydroxyapatite (NanoHA).
View Article and Find Full Text PDFBackground: Currently, ex-vivo handling of stem cells, including transport after harvest and therapeutic preparation, is generally done in culture media containing fetal bovine serum (FBS), which promotes cell attachment, proliferation, and differentiation. However, because of safety concerns associated with the use of FBS, including potential transmission of zoonotic agents and transplant rejection because of the incorporation of foreign proteins into the stem cells, there is a need for xenogeneic serum-free culture media for clinical handling of stem cells.
Methods: Dental pulp stem cells were derived from wisdom teeth donated by eight healthy volunteers and cultured in xenogeneic serum-free culture medium (XFM) or xenogeneic serum-containing culture medium (SCM).
Stem cell-based therapies depend on the reliable expansion of patient-derived mesenchymal stem cells (MSCs) in vitro. The supplementation of cell culture media with serum is associated with several risks; accordingly, serum-free media are commercially available for cell culture. Furthermore, hypoxia is known to accelerate the expansion of MSCs.
View Article and Find Full Text PDFAn undesirable complication that arises during dental treatments is external apical-root resorption, which causes root-cementum and root-dentin loss. To induce de novo cementogenesis, stem cell therapy is required. Cementum-forming cells (cementoblasts) are known to be differentiated from periodontal-lineage mesenchymal stem cells (MSCs), which are derived from the dental follicle (DF) in developing tissues and the periodontal ligament (PDL) in adult tissues, but the periodontal-lineage MSC type that is optimal for inducing de novo cementogenesis remains unidentified, as does the method to isolate these cells from harvested tissues.
View Article and Find Full Text PDFDental enamel formation, known as "amelogenesis," is initiated by cytodifferentiation of the ectodermally derived dental epithelium. Enamel cannot regenerate itself because once it is completely formed, ameloblasts are lost as the tooth erupts. Rodent teeth have been useful for studying the mechanisms of amelogenesis because ameloblast cell lines can be derived from the ever-growing incisors.
View Article and Find Full Text PDFA new cell line designated Nur-1 has been established from human endometrioid adenocarcinoma, Grade 1, pT1a, PN1 (3/24), Stage IIIc (International Federation of Gynecology and Obstetrics/Union for International Cancer Control (FIGO/UICC TNM Classification of Malignant Tumours, 7th ed.). Cytological findings of Nur-1 cells reveal anaplastic and pleomorphic features such as anisonucleosis, nucleolar pleomorphism, and piling-up tendency in cellular arrangement.
View Article and Find Full Text PDFMyoepithelioma is an extremely rare condition that accounts for 1-1.5 % of salivary gland tumors. It was formerly regarded as a subtype of pleomorphic adenoma, in which myoepithelial structural components predominated, but was listed as a separate disease entity in the 1991 World Health Organization classification (Seifert in Histological typing of salivary gland tumours.
View Article and Find Full Text PDFThe miniature pig is a useful large laboratory animal model. Various tissues and organs of miniature pigs are similar to those of humans in terms of developmental, anatomical, immunological, and physiological characteristics. The oral and maxillofacial region of miniature pigs is often used in preclinical studies of regenerative dentistry.
View Article and Find Full Text PDFThe periodontal ligament (PDL) contains various cell populations and plays a central role in the maintenance, repair, and regeneration of the periodontium, i.e., tooth-supporting structures.
View Article and Find Full Text PDFThe aim of the present study was to isolate endothelial cells from tooth buds (unerupted deciduous teeth) of miniature swine. Mandibular molar tooth buds harvested from swine fetuses at fetal days 90-110 were cultured in growth medium supplemented with 15% fetal bovine serum in 100-mm culture dishes until the primary cells outgrown from the tooth buds reached confluence. A morphologically defined set of pavement-shaped primary cells were picked up manually with filter paper containing trypsin/ethylenediamine tetraacetic acid solution and transferred to a separate dish.
View Article and Find Full Text PDFMesenchymal stem cells derived from human teeth and bone marrow have been characterized by many research groups, but demonstrate inconsistent cellular phenotypes or functions, partly because of differences in culture methodology. Therefore, our aims were to resolve these inconsistencies and discuss the potential uses of these cells in research/clinical applications. We isolated and characterized dental stem cells (DSCs) from the dental pulp, periodontal ligament, apical papilla (APSCs) and dental follicle (DFSCs) of mature and immature teeth, along with bone marrow-derived stem cells (BMSCs) from the iliac crest.
View Article and Find Full Text PDFIntroduction: We have previously differentiated hepatocyte like cells from deciduous tooth pulp stem and extracted third molar pulp stem cells with a protocol that used fetal bovine serum, but it showed high contaminations of nondifferentiated cells. Both the lower purity of hepatically differentiated cells and usage of serum are obstacles for application of cell therapy or regenerative medicine. Objective of this study was to investigate the capacity for and purity of hepatocyte-like differentiation of CD117-positive dental pulp stem cells without serum.
View Article and Find Full Text PDFMultipotent mesenchymal stem cells from bone marrow are expected to be a somatic stem cell source for the development of new cell-based therapy in regenerative medicine. However, dental clinicians are unlikely to carry out autologous cell/tissue collection from patients (i.e.
View Article and Find Full Text PDFPrimary alveolar type of rhabdomyosarcoma (RMS) tumor tissue was collected from the tongue of a 17-year-old Japanese woman and used to successfully establish a rhabdomyosarcoma cell line, which has been designated NUTOS. The chromosomal distribution revealed that the NUTOS cell line was hyper-tetraploid with chromosomal translocation. The cells were grown in Dulbecco's modified eagle medium/F12 supplemented with 15% fetal bovine serum, 0.
View Article and Find Full Text PDF