Publications by authors named "Tajahuerce E"

Imaging with single-pixel detectors offers a valuable alternative to the conventional focal plane array strategy, especially for wavelengths where silicon-based sensor arrays exhibit lower efficiency. However, the absence of optical sectioning remains a challenge in single-pixel microscopy. In this paper, we introduce a single-pixel microscope with optical sectioning capabilities by integrating single-pixel imaging (SPI) techniques with structured illumination microscopy (SIM) methods.

View Article and Find Full Text PDF

The presence of scattering media limits the quality of images obtained by optical systems. Single-pixel imaging techniques based on structured illumination are highly tolerant to the presence of scattering between the object and the sensor, but very sensitive when the scattering medium is between the light source and the object. This makes it difficult to develop single-pixel imaging techniques for the case of objects immersed in scattering media.

View Article and Find Full Text PDF

Defect inspection is required in various fields, and many researchers have attempted deep-learning algorithms for inspections. Deep-learning algorithms have advantages in terms of accuracy and measurement time; however, the reliability of deep-learning outputs is problematic in precision measurements. This study demonstrates that iterative estimation using neighboring feature maps can evaluate the uncertainty of the outputs and shows that unconfident error predictions have higher uncertainties.

View Article and Find Full Text PDF

This Roadmap article on digital holography provides an overview of a vast array of research activities in the field of digital holography. The paper consists of a series of 25 sections from the prominent experts in digital holography presenting various aspects of the field on sensing, 3D imaging and displays, virtual and augmented reality, microscopy, cell identification, tomography, label-free live cell imaging, and other applications. Each section represents the vision of its author to describe the significant progress, potential impact, important developments, and challenging issues in the field of digital holography.

View Article and Find Full Text PDF

Hadamard, cosine, and noiselet bases are implemented into a digital holographic microscope based on single-pixel imaging with the capability to retrieve images of complex objects. The object is illuminated with coherent light modulated with different patterns deployed in a digital micromirror device, and the resulting fields are captured by single-pixel detection. For amplitude images, the experimental results of the three bases are evaluated with the peak SNR criteria.

View Article and Find Full Text PDF

Time-resolved fluorescence imaging is a key tool in biomedical applications, as it allows to non-invasively obtain functional and structural information. However, the big amount of collected data introduces challenges in both acquisition speed and processing needs. Here, we introduce a novel technique that allows to acquire a giga-voxel 4D hypercube in a fast manner while measuring only 0.

View Article and Find Full Text PDF

We propose a nonscanning three-dimensional (3-D) fluorescence imaging technique using the transport of intensity equation (TIE) and free-space Fresnel propagation. In this imaging technique, a phase distribution corresponding to defocused fluorescence images with a point-light-source-like shape is retrieved by a TIE-based phase retrieval algorithm. From the obtained phase distribution, and its corresponding amplitude distribution, of the defocused fluorescence image, various images at different distances can be reconstructed at the desired plane after Fresnel propagation of the complex wave function.

View Article and Find Full Text PDF

We present a diffuse optical imaging system with structured illumination and integrated detection based on the Kubelka-Munk light propagation model for the spatial characterization of scattering and absorption properties of turbid media. The proposed system is based on the application of single-pixel imaging techniques. Our strategy allows us to retrieve images of the absorption and scattering properties of a turbid media slab by using integrating spheres with photodiodes as bucket detectors.

View Article and Find Full Text PDF

Imaging the retina of cataractous patients is useful to detect pathologies before the cataract surgery is performed. However, for conventional ophthalmoscopes, opacifications convert the lens into a scattering medium that may greatly deteriorate the retinal image. In this paper we show, as a proof of concept, that it is possible to surpass the limitations imposed by scattering applying to both, a model and a healthy eye, a newly developed ophthalmoscope based on single-pixel imaging.

View Article and Find Full Text PDF

We present a novel approach for imaging through scattering media that combines the principles of Fourier spatial filtering and single-pixel imaging. We compare the performance of our single-pixel imaging setup with that of a conventional system. First, we show that a single-pixel camera does not reduce the frequency content of the object, when a small pinhole is used as a low-pass filter at the detection side.

View Article and Find Full Text PDF

A single-pixel digital holography system with phase-encoded illumination using a digital micromirror device (DMD) as a spatial light modulator (SLM) is presented. The enhanced switching rate of DMDs, far exceeding the stringent frame-rate of liquid crystal SLMs, allows recording and reconstruction of complex amplitude distributions in just a few seconds. A single amplitude binary modulation device is used for concurrently displaying the phase-encoded sampling patterns, compensating the distortion of the wavefront, and applying phase-shifting, by means of computer generated holograms.

View Article and Find Full Text PDF

We propose a method to perform color imaging with a single photodiode by using light structured illumination generated with a low-cost color LED array. The LED array is used to generate a sequence of color Hadamard patterns which are projected onto the object by a simple optical system while the photodiode records the light intensity. A field programmable gate array (FPGA) controls the LED panel allowing us to obtain high refresh rates up to 10 kHz.

View Article and Find Full Text PDF

Single-pixel cameras have been successfully used in different imaging applications in the last years. One of the key elements affecting the quality of these cameras is the photodetector. Here, we develop a numerical model of a single-pixel camera, which takes into account not only the characteristics of the incident light but also the physical properties of the detector.

View Article and Find Full Text PDF

We describe, through simulations and experiments, a real-time wavefront acquisition technique using random binary amplitude masks and an iterative phase retrieval algorithm based on the Fresnel propagator. By using a digital micromirror device, it is possible to recover an unknown complex object by illuminating with this set of masks and simultaneously recording the resulting intensity patterns with a high-speed camera, making this technique suitable for dynamic applications.

View Article and Find Full Text PDF

We demonstrate imaging of complex amplitude objects through digital holography with phase-structured illumination and bucket detection. The object is sampled with a set of micro-structured phase patterns implemented onto a liquid-crystal spatial light modulator while a bucket detector sequentially records the irradiance fluctuations corresponding to the interference between object and reference beams. Our reconstruction algorithm retrieves the unknown phase information from the full set of photocurrent measurements.

View Article and Find Full Text PDF

Single-pixel cameras allow to obtain images in a wide range of challenging scenarios, including broad regions of the electromagnetic spectrum and through scattering media. However, there still exist several drawbacks that single-pixel architectures must address, such as acquisition speed and imaging in the presence of ambient light. In this work we introduce balanced detection in combination with simultaneous complementary illumination in a single-pixel camera.

View Article and Find Full Text PDF

During the past few years, the emergence of spatial light modulators operating at the tens of kHz has enabled new imaging modalities based on single-pixel photodetectors. The nature of single-pixel imaging enforces a reciprocal relationship between frame rate and image size. Compressive imaging methods allow images to be reconstructed from a number of projections that is only a fraction of the number of pixels.

View Article and Find Full Text PDF

One challenge that has long held the attention of scientists is that of clearly seeing objects hidden by turbid media, as smoke, fog or biological tissue, which has major implications in fields such as remote sensing or early diagnosis of diseases. Here, we combine structured incoherent illumination and bucket detection for imaging an absorbing object completely embedded in a scattering medium. A sequence of low-intensity microstructured light patterns is launched onto the object, whose image is accurately reconstructed through the light fluctuations measured by a single-pixel detector.

View Article and Find Full Text PDF

Smart control of light propagation through highly scattering media is a much desired goal with major technological implications. Since interaction of light with highly scattering media results in partial or complete depletion of ballistic photons, it is in principle impossible to transmit images through distances longer than the extinction length. Nevertheless, different methods for image transmission, focusing, and imaging through scattering media by means of wavefront control have been published over the past few years.

View Article and Find Full Text PDF

In computational imaging by pattern projection, a sequence of microstructured light patterns codified onto a programmable spatial light modulator is used to sample an object. The patterns are used as generalized measurement modes where the object information is expressed. In this Letter, we show that the resolution of the recovered image is only limited by the numerical aperture of the projecting optics regardless of the quality of the collection optics.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores using femtosecond laser radiation in digital lensless holographic microscopy (DLHM) to image biological samples.
  • A Ti:Sa laser emitting ultrashort 12 fs pulses at 800 nm wavelength was used, alongside a light-emitting diode for comparison.
  • Findings reveal significant differences in how pinhole size affects spatial resolution in DLHM when using different light sources, uncovering previously unrecognized phenomena in the field.
View Article and Find Full Text PDF

This Letter develops a framework for digital holography at optical wavelengths by merging phase-shifting interferometry with single-pixel optical imaging based on compressive sensing. The field diffracted by an input object is sampled by Hadamard patterns with a liquid crystal spatial light modulator. The concept of a single-pixel camera is then adapted to perform interferometric imaging of the sampled diffraction pattern by using a Mach-Zehnder interferometer.

View Article and Find Full Text PDF

We experimentally demonstrate an all-diffractive optical setup for digital lensless holographic microscopy with easy wavelength line selection and micrometric resolution. In the proposed system, an ultrashort laser pulse is focused with a diffractive lens (DL) onto a pinhole of diameter close to its central wavelength to achieve a highly spatially coherent illumination cone as well as a spectral line with narrow width. To scan the complete spectrum of the light source the DL is displaced with respect to the pinhole plane.

View Article and Find Full Text PDF

Different spatial distributions of optical vortices have been generated and characterized by implementing arrays of devil's vortex lenses in a reconfigurable spatial light modulator. A simple design procedure assigns the preferred position and topological charge value to each vortex in the structure, tuning the desired angular momentum. Distributions with charges and momenta of the opposite sign have been experimentally demonstrated.

View Article and Find Full Text PDF
Article Synopsis
  • An optical system is developed for Stokes polarimetric imaging using a single-pixel detector, leveraging compressive sampling theory.
  • The system utilizes a spatial light modulator to create a series of preprogrammed light intensity patterns.
  • Experimental results demonstrate the effectiveness of this method on an object with varying polarization characteristics.
View Article and Find Full Text PDF