Bread staling adversely affects the quality of bread, but starch modification by enzymes can counteract this phenomenon. Glycogen branching enzymes (GBEs) used in this study were isolated from Deinococcus geothermalis (DgGBE), Escherichia coli (EcGBE), and Vibrio vulnificus (VvGBE). These enzymes were characterized and applied for starch dough modification to determine their role in improving bread quality.
View Article and Find Full Text PDFFood producers are interested in enhancing native starch properties without chemical modifications. Here, rice starches were physically modified via heat-moisture treatment (HMT) using different amylose (high, medium, low, and waxy) and moisture (15 %, 20 %, 25 %, and 30 %) contents. Hydration properties and pasting viscosities differed for different amylose and moisture contents.
View Article and Find Full Text PDFSelf-powered deep-ultraviolet photodetectors have received considerable attention in recent years because of their efficiency, reliability, and various applications in civilian and military fields. Herein, a Ag/AgO layer is continuously deposited on a β-GaO epitaxial layer by a facing target sputtering system without opening the chamber, which has an advantage in time and cost. A p-n junction photodetector was constructed through the AgO/β-GaO heterojunction and by varying the thickness of the Ag film, which was controlled by the sputtering time.
View Article and Find Full Text PDFReal-time and sensitive detection of pathogenic bacteria in food is in high demand to ensure food safety. In this study, a single-walled carbon nanotubes (SWCNTs)-based electrochemical impedance immunosensor for on-site detection of Listeria monocytogenes (L. monocytogenes) was developed.
View Article and Find Full Text PDFFreezing extends the shelf-life of food by slowing down the physical and biochemical reactions; however, ice crystal formation can result in irreversible damage to the cell's structure and texture. Supercooling technology has the potential to preserve the original freshness of food without freezing damage. In this study, fresh asparagus was preserved in a supercooled state and its quality changes such as color, weight loss, texture, chlorophyll and anthocyanin content, and enzymatic activities (superoxide dismutase and catalase) were evaluated.
View Article and Find Full Text PDFThis study was aimed to determine the physical property and thermodynamic stability of nanostructured lipid carrier suspension incorporating ginsenoside F1 (GF1_NLC), and to evaluate its transport and antioxidant properties. GF1_NLC suspension possessed spherical particles with an average size of 98.9 nm, and the encapsulation efficiency reached approximately 90%.
View Article and Find Full Text PDFThe popularity of senior-friendly food has been increasing as the world enters the age of an aging society. It is required that senior-friendly food products are processed with the new concept of processing techniques that do not destroy the nutritional and sensory values. Ohmic heating can be an alternative to conventional heating methods for processing senior-friendly food with retaining excellent taste and quality because of less destruction of nutrients in the food.
View Article and Find Full Text PDFThe present study was focused on the investigation of physiochemical changes in tuna subjected to a novel supercooling preservation, which was assisted using a combination of pulsed electric fields (PEF) and oscillating magnetic fields (OMF). Fresh tuna fillets were stored without freezing at -3.2 °C for 8 days.
View Article and Find Full Text PDFFreezing has been widely recognized as the most common process for long-term preservation of perishable foods; however, unavoidable damages associated with ice crystal formation lead to unacceptable quality losses during storage. As an alternative, supercooling preservation has a great potential to extend the shelf-life and maintain quality attributes of fresh foods without freezing damage. Investigations for the application of external electric field (EF) and magnetic field (MF) have theorized that EF and MF appear to be able to control ice nucleation by interacting with water molecules in foods and biomaterials; however, many questions remain open in terms of their roles and influences on ice nucleation with little consensus in the literature and a lack of clear understanding of the underlying mechanisms.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
November 2015
In this paper, we present the preparation and characterization of Schottky barrier diodes based on silicon carbide with various Schottky metal layer thickness values. In this structure, molybdenum and aluminum were employed as the Schottky barrier metal and top electrode, respectively. Schottky metal layers were deposited with thicknesses ranging from 1000 to 3000 Å, and top electrodes were deposited with thickness as much as 3000 Å.
View Article and Find Full Text PDF