Publications by authors named "Taixin Yu"

Juvenile myelomonocytic leukemia (JMML) is a rare myeloproliferative neoplasm occurring in infants and young children. JMML has been shown to be resistant to all conventional cytotoxic chemotherapy drugs, and current curative therapies still rely on hematopoietic stem cell transplantation, which carries a high risk of relapse post-transplantation. This underscores the urgent need for novel treatment strategies.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a hematological malignancy characterized by the impaired differentiation and uncontrolled proliferation of myeloid blasts. Tumor suppressor p53 is often downregulated in AML cells via ubiquitination-mediated degradation. While the role of E3 ligase MDM2 in p53 ubiquitination is well-accepted, little is known about the involvement of deubiquitinases (DUBs).

View Article and Find Full Text PDF

Leukemogenic SHP2 mutations occur in 35% of patients with juvenile myelomonocytic leukemia (JMML), a hematopoietic malignancy with poor response to cytotoxic chemotherapy. Novel therapeutic strategies are urgently needed for patients with JMML. Previously, we established a novel cell model of JMML with HCD-57, a murine erythroleukemia cell line that depends on EPO for survival.

View Article and Find Full Text PDF

Leukemogenic SHP2 mutations occur in 35% of patients with juvenile myelomonocytic leukemia (JMML), a rare but fatal hematopoietic malignancy without representative cell models, which are urgently needed to investigate the pathogenesis and to develop novel therapeutic strategies. In this study, we established stable cell lines with aberrant signaling resembling SHP2-mutant JMML through retroviral expression of SHP2-D61Y/E76K in HCD-57 cells, a murine erythroleukemia cell line that depends on erythropoietin (EPO) for survival. SHP2-D61Y/E76K drives the survival and proliferation of HCD-57 cells in the absence of EPO, but not in Ba/F3 cells in the absence of IL-3.

View Article and Find Full Text PDF

Allogeneic stem cell transplantation is a cure for patients suffering from thalassemia major (TM). Historically, patients were limited by the selection of donors, while the advancement of haploidentical stem cell transplantation (haplo-SCT) has greatly expanded the donor pool. However, the outcomes of haplo-SCT in TM recipients vary between different programs.

View Article and Find Full Text PDF