Plants are constantly under attack from a variety of microorganisms, and rely on a series of complex detection and response systems to protect themselves from infection. Here, we found that a by-product of glutamate fermentation triggered defense responses in grapevine, increasing the expression of defense response genes in cultured cells, foliar chitinase activity, and resistance to infection by downy mildew in leaf explants. To identify the molecule that triggered this innate immunity, we fractionated and purified candidates extracted from Corynebacterium glutamicum, a bacterium used in the production of amino acids by fermentation.
View Article and Find Full Text PDFPollen development is a fundamental and essential biological process in seed plants. Pollen mother cells generated in anthers undergo meiosis, which gives rise to haploid microspores. The haploid cells then develop into mature pollen grains through two mitotic cell divisions.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
March 2003
cDNA of a monosaccharide transporter in rice, OsMST5 (Oryza sativa monosaccharide transporter 5) was cloned and its sugar transport activity was characterized by heterologous expression analysis. The amino acid sequence and topology were similar to the sequences and topology of other plant monosaccharide transporters. Yeast cells co-expressed with OsMST5 cDNA transported some monosaccharide substrates.
View Article and Find Full Text PDFAlthough the shoot apical meristem (SAM) is ultimately responsible for post-embryonic development in higher plants, lateral meristems also play an important role in determining the final morphology of the above-ground part. Axillary buds developing at the axils of leaves produce additional shoot systems, lateral branches. The rice TB1 gene (OsTB1) was first identified based on its sequence similarity with maize TEOSINTE BRANCHED 1 (TB1), which is involved in lateral branching in maize.
View Article and Find Full Text PDF