Background: Washing red blood cell (RBC) units mitigates severe allergic transfusion reactions. However, washing reduces the time to expiration and the effective dose. Automated washing is time- and labor-intensive.
View Article and Find Full Text PDFHigh mobility group A1 (HMGA1) chromatin regulators are upregulated in diverse tumors where they portend adverse outcomes, although how they function in cancer remains unclear. Pancreatic ductal adenocarcinomas (PDACs) are highly lethal tumors characterized by dense desmoplastic stroma composed predominantly of cancer-associated fibroblasts and fibrotic tissue. Here, we uncover an epigenetic program whereby HMGA1 upregulates FGF19 during tumor progression and stroma formation.
View Article and Find Full Text PDFA 51-year-old woman suffered cardiac arrest requiring emergent intraosseous access that abutted the tibial component of her total knee arthroplasty. She developed a wound at the site and knee pain which was concerning for deep infection. Subsequent imaging was consistent with osteonecrosis developing around the tibial component.
View Article and Find Full Text PDFHigh-mobility group A1 (Hmga1) chromatin remodelling proteins are enriched in intestinal stem cells (ISCs), although their function in this setting was unknown. Prior studies showed that Hmga1 drives hyperproliferation, aberrant crypt formation and polyposis in transgenic mice. Here we demonstrate that Hmga1 amplifies Wnt/β-catenin signalling to enhance self-renewal and expand the ISC compartment.
View Article and Find Full Text PDFBecause colorectal cancer (CRC) remains a leading cause of cancer mortality worldwide, more accessible screening tests are urgently needed to identify early stage lesions. We hypothesized that highly sensitive, metabolic profile analysis of stool samples will identify metabolites associated with early stage lesions and could serve as a noninvasive screening test. We therefore applied traveling wave ion mobility mass spectrometry (TWIMMS) coupled with ultraperformance liquid chromatography (UPLC) to investigate metabolic aberrations in stool samples in a transgenic model of premalignant polyposis aberrantly expressing the gene encoding the high mobility group A (Hmga1) chromatin remodeling protein.
View Article and Find Full Text PDFObjectives: Although uterine cancer is the fourth most common cause for cancer death in women worldwide, the molecular underpinnings of tumor progression remain poorly understood. The High Mobility Group A1 (HMGA1) gene is overexpressed in aggressive cancers and high levels portend adverse outcomes in diverse tumors. We previously reported that Hmga1a transgenic mice develop uterine tumors with complete penetrance.
View Article and Find Full Text PDFAlthough significant progress has been made in the diagnosis and treatment of colorectal cancer (CRC), it remains a leading cause of cancer death worldwide. Early identification and removal of polyps that may progress to overt CRC is the cornerstone of CRC prevention. Expression of the High Mobility Group A1 (HMGA1) gene is significantly elevated in CRCs as compared with adjacent, nonmalignant tissues.
View Article and Find Full Text PDFExpert Opin Ther Targets
May 2014
Introduction: Emerging evidence demonstrates that the high mobility group A1 (HMGA1) chromatin remodeling protein is a key molecular switch required by cancer cells for tumor progression and a poorly differentiated, stem-like state. Because the HMGA1 gene and proteins are expressed at high levels in all aggressive tumors studied to date, research is needed to determine how to 'turn off' this master regulatory switch in cancer.
Areas Covered: In this review, we describe prior studies that underscore the central role of HMGA1 in refractory cancers and we discuss approaches to target HMGA1 in cancer therapy.
Context: Although pancreatic cancer is a common, highly lethal malignancy, the molecular events that enable precursor lesions to become invasive carcinoma remain unclear. We previously reported that the high-mobility group A1 (HMGA1) protein is overexpressed in >90% of primary pancreatic cancers, with absent or low levels in early precursor lesions.
Methods: Here, we investigate the role of HMGA1 in reprogramming pancreatic epithelium into invasive cancer cells.
Background: Although the high mobility group A1 (HMGA1) gene is widely overexpressed in diverse cancers and portends a poor prognosis in some tumors, the molecular mechanisms that mediate its role in transformation have remained elusive. HMGA1 functions as a potent oncogene in cultured cells and induces aggressive lymphoid tumors in transgenic mice. Because HMGA1 chromatin remodeling proteins regulate transcription, HMGA1 is thought to drive malignant transformation by modulating expression of specific genes.
View Article and Find Full Text PDF