Publications by authors named "Tairan Qin"

Alterations in the microbiome correlate with improved metabolism in patients following bariatric surgery. While fecal microbiota transplantation (FMT) from obese patients into germ-free (GF) mice has suggested a significant role of the gut microbiome in metabolic improvements following bariatric surgery, causality remains to be confirmed. Here, we perform paired FMT from the same obese patients (BMI > 40; four patients), pre- and 1 or 6 months post-Roux-en-Y gastric bypass (RYGB) surgery, into Western diet-fed GF mice.

View Article and Find Full Text PDF

Enhancing pancreatic β-cell secretion is a primary therapeutic target for type-2 diabetes (T2D). Syntaxin-2 (Stx2) has just been identified to be an inhibitory SNARE for insulin granule exocytosis, holding potential as a treatment for T2D, yet its molecular underpinnings remain unclear. We show that excessive Stx2 recruitment to raft-like granule docking sites at higher binding affinity than pro-fusion syntaxin-1A effectively competes for and inhibits fusogenic SNARE machineries.

View Article and Find Full Text PDF

Intrapancreatic trypsin activation by dysregulated macroautophagy/autophagy and pathological exocytosis of zymogen granules (ZGs), along with activation of inhibitor of NFKB/NF-κB kinase (IKK) are necessary early cellular events in pancreatitis. How these three pancreatitis events are linked is unclear. We investigated how SNAP23 orchestrates these events leading to pancreatic acinar injury.

View Article and Find Full Text PDF

SNAP23 is the ubiquitous SNAP25 isoform that mediates secretion in non-neuronal cells, similar to SNAP25 in neurons. However, some secretory cells like pancreatic islet β cells contain an abundance of both SNAP25 and SNAP23, where SNAP23 is believed to play a redundant role to SNAP25. We show that SNAP23, when depleted in mouse β cells in vivo and human β cells (normal and type 2 diabetes [T2D] patients) in vitro, paradoxically increased biphasic glucose-stimulated insulin secretion corresponding to increased exocytosis of predocked and newcomer insulin granules.

View Article and Find Full Text PDF

The voltage-dependent K (K) channel K2.1 is a major delayed rectifier in many secretory cells, including pancreatic β cells. In addition, K2.

View Article and Find Full Text PDF

Reduced pancreatic islet levels of Munc18a/SNARE complex proteins have been postulated to contribute to the deficient glucose-stimulated insulin secretion (GSIS) in type-2 diabetes (T2D). Whereas much previous work has purported Munc18a/SNARE complex (Syntaxin-1A/VAMP-2/SNAP25) to be primarily involved in predocked secretory granule (SG) fusion, less is known about newcomer SGs that undergo minimal docking time at the plasma membrane before fusion. Newcomer SG fusion has been postulated to involve a distinct SM/SNARE complex (Munc18b/Syntaxin-3/VAMP8/SNAP25), whose levels we find also reduced in islets of T2D humans and T2D Goto-Kakizaki (GK) rats.

View Article and Find Full Text PDF

Of the four syntaxins specialized for exocytosis, syntaxin (Syn)-2 is the least understood. In this study, we used Syn-2/epimorphin knockout mice to examine the role of Syn-2 in insulin secretory granule (SG) exocytosis. Unexpectedly, Syn-2 knockout mice exhibited paradoxical superior glucose homeostasis resulting from an enhanced insulin secretion.

View Article and Find Full Text PDF

In type-2 diabetes (T2D), severely reduced islet syntaxin-1A (Syn-1A) levels contribute to insulin secretory deficiency. We generated β-cell-specific Syn-1A-KO (Syn-1A-βKO) mice to mimic β-cell Syn-1A deficiency in T2D. Glucose tolerance tests showed that Syn-1A-βKO mice exhibited blood glucose elevation corresponding to reduced blood insulin levels.

View Article and Find Full Text PDF

Synaptotagmin (Syt)-7, a major component of the exocytotic machinery in neurons, is also the major Syt in rodent pancreatic β-cells shown to mediate glucose-stimulated insulin secretion (GSIS). However, Syt-7's precise exocytotic actions in β-cells remain unknown. We show that Syt-7 is abundant in human β-cells.

View Article and Find Full Text PDF

Syntaxin (Syn)-1A mediates exocytosis of predocked insulin-containing secretory granules (SGs) during first-phase glucose-stimulated insulin secretion (GSIS) in part via its interaction with plasma membrane (PM)-bound L-type voltage-gated calcium channels (Cav). In contrast, Syn-3 mediates exocytosis of newcomer SGs that accounts for second-phase GSIS. We now hypothesize that the newcomer SG Syn-3 preferentially binds and modulates R-type Cav opening, which was postulated to mediate second-phase GSIS.

View Article and Find Full Text PDF

Aims/hypothesis: Of the four exocytotic syntaxins (Syns), much is now known about the role of Syn-1A (pre-docked secretory granules [SGs]) and Syn-3 (newcomer SGs) in insulin exocytosis. Some work was reported on Syn-4's role in biphasic glucose-stimulated insulin secretion (GSIS), but its precise role in insulin SG exocytosis remains unclear. In this paper we examine this role in human beta cells.

View Article and Find Full Text PDF

Objective: Pancreatic islets are notoriously difficult to efficiently transduce genes with viruses whether in vivo or ex vivo, the latter only transducing superficial layers of the islet. To improve efficiency of transduction, we explored surgical approaches to virus delivery in vivo.

Methods: A technique was developed for retrograde surgical perfusion into the rat biliopancreatic duct with a test adenovirus containing a construct coexpressing green fluorescent protein, the latter for detection of infected cells.

View Article and Find Full Text PDF

In β-cells, syntaxin (Syn)-1A interacts with SUR1 to inhibit ATP-sensitive potassium channels (KATP channels). PIP2 binds the Kir6.2 subunit to open KATP channels.

View Article and Find Full Text PDF

Impaired counterregulation during hypoglycemia in type 1 diabetes (T1D) is partly attributable to inadequate glucagon secretion. Intra-islet somatostatin (SST) suppression of hypoglycemia-stimulated α-cell glucagon release plays an important role. We hypothesized that hypoglycemia can be prevented in autoimmune T1D by SST receptor type 2 (SSTR2) antagonism of α-cells, which relieve SSTR2 inhibition, thereby increasing glucagon secretion.

View Article and Find Full Text PDF

Sec1/Munc18 proteins facilitate the formation of trans-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes that mediate fusion of secretory granule (SG) with plasma membrane (PM). The capacity of pancreatic β-cells to exocytose insulin becomes compromised in diabetes. β-Cells express three Munc18 isoforms of which the role of Munc18b is unknown.

View Article and Find Full Text PDF

Optimal insulin secretion required to maintain glucose homeostasis is the summation of total pancreatic islet β cell mass and intrinsic secretory capacity of individual β cells, which are regulated by distinct mechanisms that could be amplified by glucagon-like-peptide-1 (GLP-1). Because of these actions of GLP-1 on islet β cells, GLP-1 has been deployed to treat diabetes. We employed SNARE protein VAMP8-null mice to demonstrate that VAMP8 mediates insulin granule recruitment to the plasma membrane, which partly accounts for GLP-1 potentiation of glucose-stimulated insulin secretion.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session4hq12oro7smpqk2p84ogulabkl9q6t0f): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once