Background: Improving the surgical outcomes for commonly occurring spinal neoplasms of extradural and intradural extramedullary origins requires precise intraoperative diagnosis provided by highly trained neuropathologists.
Methods: Through a retrospective study of n=319 patient specimens, verified where appropriate by learning curve analysis to be sufficient for statistically significant observations, we aimed to assess the utility of 10-second picosecond infrared laser mass spectrometry (PIRL-MS) for non-subjective diagnosis of major spinal tumour types of metastatic carcinoma, schwannoma and meningiomas.
Results: The sensitivity and specificity values of spinal tumour type diagnosis (based on n=182 independent specimens) were (93±1)% and (97±2)%, respectively.
Proteolysis-targeting chimeras (PROTACs) have been explored for the degradation of drug targets for more than two decades. However, only a handful of E3 ligase substrate receptors have been efficiently used. Downregulation and mutation of these receptors would reduce the effectiveness of such PROTACs.
View Article and Find Full Text PDFWhile untargeted analysis of biological tissues with ambient mass spectrometry analysis probes has been widely reported in the literature, there are currently no guidelines to standardize the workflows for the experimental design, creation, and validation of molecular models that are utilized in these methods to perform class predictions. By drawing parallels with hurdles that are faced in the field of food fraud detection with untargeted mass spectrometry, we provide a stepwise workflow for the creation, refinement, evaluation, and assessment of the robustness of molecular models, aimed at meaningful interpretation of mass spectrometry-based tissue classification results. We propose strategies to obtain a sufficient number of samples for the creation of molecular models and discuss the potential overfitting of data, emphasizing both the need for model validation using an independent cohort of test samples, as well as the use of a fully characterized feature-based approach that verifies the biological relevance of the features that are used to avoid false discoveries.
View Article and Find Full Text PDFDespite decades of research on new diffuse intrinsic pontine glioma (DIPG) treatments, little or no progress has been made on improving patient outcomes. In this work, we explored novel scaffold modifications of , a 3,5-diphenylpyridine ALK2 inhibitor previously reported by our group. Here we disclose the design, synthesis, and evaluation of a first-in-class set of 5- to 7-membered ether-linked and 7-membered amine-linked constrained inhibitors of ALK2.
View Article and Find Full Text PDFPicosecond infrared laser mass spectrometry (PIRL-MS) is shown, through a retrospective patient tissue study, to differentiate medulloblastoma cancers from pilocytic astrocytoma and two molecular subtypes of ependymoma (PF-EPN-A, ST-EPN-RELA) using laser-extracted lipids profiled with PIRL-MS in 10 s of sampling and analysis time. The average sensitivity and specificity values for this classification, taking genomic profiling data as standard, were 96.41 and 99.
View Article and Find Full Text PDFRapid molecular profiling of biological tissues with picosecond infrared laser mass spectrometry (PIRL-MS) has enabled the detection of clinically important histologic types and molecular subtypes of human cancers in as little as 10 s of data collection and analysis time. Utilizing an engineered cell line model of actionable BRAF-V600E mutation, we observed statistically significant differences in 10 s PIRL-MS molecular profiles between BRAF-V600E and BRAF-wt cells. Multivariate statistical analyses revealed a list of mass-to-charge (/) values most significantly responsible for the identification of BRAF-V600E mutation status in this engineered cell line that provided a highly controlled testbed for this observation.
View Article and Find Full Text PDFRising drug resistance among pathogenic fungi, paired with a limited antifungal arsenal, poses an increasing threat to human health. To identify antifungal compounds, we screened the RIKEN natural product depository against representative isolates of four major human fungal pathogens. This screen identified NPD6433, a triazenyl indole with broad-spectrum activity against all screening strains, as well as the filamentous mold Aspergillus fumigatus.
View Article and Find Full Text PDFCurrently, a large number of skin biopsies are taken for each true skin cancer case detected, creating a need for a rapid, high sensitivity, and specificity skin cancer detection tool to reduce the number of unnecessary biopsies taken from benign tissue. Picosecond infrared laser mass spectrometry (PIRL-MS) using a hand-held sampling probe is reported to detect and classify melanoma, squamous cell carcinoma, and normal skin with average sensitivity and specificity values of 86-95% and 91-98%, respectively (at a 95% confidence level) solely requiring 10 s or less of total data collection and analysis time. Classifications are not adversely affected by specimen's quantity of melanin pigments and are mediated by a number of metabolic lipids, further identified herein as potential biomarkers for skin cancer-type differentiation, 19 of which were sufficient here (as a fully characterized metabolite array) to provide high specificity and sensitivity classification of skin cancer types.
View Article and Find Full Text PDFBoth previous and additional genetic knockdown studies reported herein implicate G protein-coupled receptor kinase 6 (GRK6) as a critical kinase required for the survival of multiple myeloma (MM) cells. Therefore, we sought to develop a small molecule GRK6 inhibitor as an MM therapeutic. From a focused library of known kinase inhibitors, we identified two hits with moderate biochemical potencies against GRK6.
View Article and Find Full Text PDFMutations in the gene encoding activin receptor-like kinase 2 (ALK2) are implicated in the pathophysiology of a pediatric brainstem cancer, diffuse intrinsic pontine glioma (DIPG). Inhibitors of ALK2 that cross the blood-brain barrier have been proposed as a method of treatment for DIPG. As part of an open science approach to radiopharmaceutical and drug discovery, we developed C-labeled radiotracers from potent and selective lead ALK2 inhibitors to investigate their brain permeability through positron emission tomography (PET) neuroimaging.
View Article and Find Full Text PDFSpatially resolved ambient mass spectrometry imaging methods have gained popularity to characterize cancer sites and their borders using molecular changes in the lipidome. This utility, however, is predicated on metabolic homogeneity at the border, which would create a sharp molecular transition at the morphometric borders. We subjected murine models of human medulloblastoma brain cancer to mass spectrometry imaging, a technique that provides a direct readout of tissue molecular content in a spatially resolved manner.
View Article and Find Full Text PDFTAK-243 is a first-in-class inhibitor of ubiquitin-like modifier activating enzyme 1 that catalyzes ubiquitin activation, the first step in the ubiquitylation cascade. Based on its preclinical efficacy and tolerability, TAK-243 has been advanced to phase I clinical trials in advanced malignancies. Nonetheless, the determinants of TAK-243 sensitivity remain largely unknown.
View Article and Find Full Text PDFThere are currently no effective chemotherapeutic drugs approved for the treatment of diffuse intrinsic pontine glioma (DIPG), an aggressive pediatric cancer resident in the pons region of the brainstem. Radiation therapy is beneficial but not curative, with the condition being uniformly fatal. Analysis of the genomic landscape surrounding DIPG has revealed that activin receptor-like kinase-2 (ALK2) constitutes a potential target for therapeutic intervention given its dysregulation in the disease.
View Article and Find Full Text PDFDiffuse intrinsic pontine glioma is an aggressive pediatric cancer for which no effective chemotherapeutic drugs exist. Analysis of the genomic landscape of this disease has led to the identification of the serine/threonine kinase ALK2 as a potential target for therapeutic intervention. In this work, we adopted an open science approach to develop a series of potent type I inhibitors of ALK2 which are orally bio-available and brain-penetrant.
View Article and Find Full Text PDFMedulloblastoma (MB) is a pediatric malignant brain tumor composed of four different subgroups (WNT, SHH, Group 3, Group 4), each of which are a unique biological entity with distinct clinico-pathological, molecular, and prognostic characteristics. Although risk stratification of patients with MB based on molecular features may offer personalized therapies, conventional subgroup identification methods take too long and are unable to deliver subgroup information intraoperatively. This limitation prevents subgroup-specific adjustment of the extent or the aggressiveness of the tumor resection by the neurosurgeon.
View Article and Find Full Text PDFNanoparticles provide a unique opportunity to explore the benefits of selective distribution and release of cancer therapeutics at sites of disease through varying particle sizes and compositions that exploit the enhanced permeability of tumor-associated blood vessels. Though delivery of larger as opposed to smaller and/or actively transported molecules to the brain is prima facie a challenging endeavor, we wondered whether nanoparticles could improve the therapeutic index of existing drugs for use in treating brain tumors via these vascular effects. We therefore selected a family of nanoparticles composed of cabazitaxel-carboxymethyl cellulose amphiphilic polymers to investigate the potential for delivering a brain-penetrant taxane to intracranial brain tumors in mice.
View Article and Find Full Text PDFMedulloblastoma (MB), the most prevalent malignant childhood brain tumour, consists of at least 4 distinct subgroups each of which possesses a unique survival rate and response to treatment. To rapidly determine MB subgroup affiliation in a manner that would be actionable during surgery, we subjected murine xenograft tumours of two MB subgroups (SHH and Group 3) to Mass Spectrometry (MS) profiling using a handheld Picosecond InfraRed Laser (PIRL) desorption probe and interface developed by our group. This platform provides real time MS profiles of tissue based on laser desorbed lipids and small molecules with only 5-10 seconds of sampling.
View Article and Find Full Text PDFEffective treatment of metastatic castration resistant prostate cancer (mCRPC) remains an unmet challenge. Cabazitaxel (CBZ) is approved for mCRPC after docetaxel (DTX) failure, but the improvement in survival is only moderate (∼2 months) and patients suffer from significant side effects. Here, we report the development of a polymer based delivery system for CBZ to improve its safety and efficacy against DTX-resistant mCRPC.
View Article and Find Full Text PDFWD repeat-containing protein 5 (WDR5) is an important component of the multiprotein complex essential for activating mixed-lineage leukemia 1 (MLL1). Rearrangement of the MLL1 gene is associated with onset and progression of acute myeloid and lymphoblastic leukemias, and targeting the WDR5-MLL1 interaction may result in new cancer therapeutics. Our previous work showed that binding of small molecule ligands to WDR5 can modulate its interaction with MLL1, suppressing MLL1 methyltransferase activity.
View Article and Find Full Text PDF