Publications by authors named "Taiping Mo"

The Kidney and Kidney Tumor Segmentation Challenge 2021 (KiTS21) released a kidney CT dataset with 300 patients. Unlike KiTS19, KiTS21 provided a cyst category. Therefore, the segmentation of kidneys, tumors, and cysts will be able to assess the complexity and aggressiveness of kidney mass.

View Article and Find Full Text PDF

Background: Medical image segmentation is crucial in disease diagnosis and treatment planning. Deep learning (DL) techniques have shown promise. However, optimizing DL models requires setting numerous parameters, and demands substantial labeled datasets, which are labor-intensive to create.

View Article and Find Full Text PDF

Background: Kidney tumors have become increasingly prevalent among adults and are now considered one of the most common types of tumors. Accurate segmentation of kidney tumors can help physicians assess tumor complexity and aggressiveness before surgery. However, segmenting kidney tumors manually can be difficult because of their heterogeneity.

View Article and Find Full Text PDF

The incidence rate of kidney tumors increases year by year, especially for some incidental small tumors. It is challenging for doctors to segment kidney tumors from kidney CT images. Therefore, this paper proposes a deep learning model based on FR2PAttU-Net to help doctors process many CT images quickly and efficiently and save medical resources.

View Article and Find Full Text PDF