Vegetation growth is affected by past growth rates and climate variability. However, the impacts of vegetation growth carryover (VGC; biotic) and lagged climatic effects (LCE; abiotic) on tree stem radial growth may be decoupled from photosynthetic capacity, as higher photosynthesis does not always translate into greater growth. To assess the interaction of tree-species level VGC and LCE with ecosystem-scale photosynthetic processes, we utilized tree-ring width (TRW) data for three tree species: Castanopsis eyrei (CE), Castanea henryi (CH, Chinese chinquapin), and Liquidambar formosana (LF, Chinese sweet gum), along with satellite-based data on canopy greenness (EVI, enhanced vegetation index), leaf area index (LAI), and gross primary productivity (GPP).
View Article and Find Full Text PDFBackground: The continuous establishment of Chinese fir () plantations across multiple generations has led to the limited impact of soil phosphorus (P) on tree growth. This challenge poses a significant obstacle in maintaining the sustainable management of Chinese fir.
Methods: To investigate the effects of Arbuscular mycorrhizal fungi (AMF) on the growth and physiological characteristics of Chinese fir under different P supply treatments.
Purple soils are greatly representative of ecologically fragile soils in southern China, yet the impact of vegetation restoration processes on the nitrogen (N) availability in purple soil ecosystems is still unclear. In this study, the soil nutrient content, available N fractions (including microbial biomass N (MBN), ammonium N (NH-N), nitrate N (NO-N), and total dissolved N (TDN)), and enzyme activities (including urease (URE), nitrate reductase (NR), and nitrite reductase (NIR)) involved in N mineralization and immobilization were investigated across the three vegetation-restoration measures: monoculture, ryegrass intercropping, and intercropping with weeds. The results showed that the monoculture mode considerably enhanced the accumulation and availability of soil N and modified the proportion of available N fractions in arable land situated on purple soil slopes, compared to the intercropping mode, the physical, chemical, and microbiological properties of soil demonstrated more pronounced effects due to the monoculture vegetation-restoration measures.
View Article and Find Full Text PDFSalinity is considered to be a global problem and a severe danger to modern agriculture since it negatively impacts plants' growth and development at both cellular- and whole-plant level. However, cobalt (Co) and titanium (Ti), multifunctional non-essential micro-elements, play a crucial role in improving plant growth and development under salinity stress. In the current study, Co and Ti impact on the morphological, biochemical, nutritional, and metabolic profile of plants under three salinity levels which were assessed.
View Article and Find Full Text PDFThe precise biological function and activity of the deoxylulose-5-phosphate reductoisomerase (DXR) gene and its promoter in Osmanthus fragrans var. semperflorens remain unclear, even though OfDXR is known as the crucial enzyme involved in plant terpenoid synthesis. This study aimed to shed light on the role and activity of the OfDXR gene and its promoter in O.
View Article and Find Full Text PDFEcological stoichiometry plays important roles in understanding the nutrient constraints on tree growth and development, as well in maintaining ecosystem services in forests, yet the characteristics of carbon:nitrogen:phosphorous (C:N:P) stoichiometry in forests under karst environment have not been sufficiently evaluated. In this study, concentration, distribution, stocks of Nitrogen (N) and Phosphorous (P), and ecological stoichiometry were studied in three common forest types: Masson pine natural forests (MPNF), Masson pine plantation forests (MPPF), and Slash pine plantation forests (SPPF) in a karst region of southwestern China. Results showed that N concentrations were higher in overstory than in understory and litter in the studied forests.
View Article and Find Full Text PDFSoil compaction has become a global problem affecting soil worldwide. With an increased population, more demands for food and wood have resulted in intensive cultivation and increased mechanization of our farmlands and irrigated plantations. The use of heavy machinery results in soil compaction, which affects the entire soil ecosystem.
View Article and Find Full Text PDFAgroforest systems have been widely recognized as an integrated approach to sustainable land use for addressing the climate change problem because of their greater potential to sequester atmospheric CO with multiple economic and ecological benefits. However, the nature and extent of the effects of an age-sequence of agroforestry systems on carbon (C) storage remain largely unknown. To reveal the influence of different aged poplar-crop systems on C stocks, we investigated the variation in biomass and C storage under four aged poplar-crop agroforest systems (3-, 9-, 13-, and 17-year-old) in the Henan province of China.
View Article and Find Full Text PDFWe investigated biochar-induced drought tolerance in (Kallar grass) by exploring the plant defense system at physiological level. plants were exposed to drought stress (100%, 70%, and 30% field capacity), and biochar (BC), as an organic soil amendment was applied in two concentrations (15 and 30 mg kg soil) to induce drought tolerance. Our results demonstrated that drought restricted the growth of by inhibiting shoot and root (fresh and dry) weight, total chlorophyll content and photosynthetic rate.
View Article and Find Full Text PDFWood anatomy and plant hydraulics play a significant role in understanding species-specific responses and their ability to manage rapid environmental changes. This study used the dendro-anatomical approach to assess the anatomical characteristics and their relation to local climate variability in the boreal coniferous tree species (Dahurian larch) and var. (Scots pine) at an altitude range of 660 to 842 m.
View Article and Find Full Text PDFDifferent land use practices may improve soil quality or lead to soil deterioration. Recently, environmental problems, such as heavy pollution and soil erosion, have led to serious land degradation in the Taojia River basin. In this study, we explored the soil fertility characteristics (mechanical composition; pH; soil organic matter (SOM); soil total nitrogen (TN); and the activity of four enzymes, i.
View Article and Find Full Text PDFThe potential toxicity of microplastic (MPs) to organisms has attracted extensive attention. However, due to the subacute toxicity of MPs, the biological effect is hard to verify in short-term exposure experiment. Here, by tracking the dynamics of gut microbes, mice model was utilized to evaluate the toxicity of compositional MPs (PE, PET, PP, PS and PVC).
View Article and Find Full Text PDFBeing sessile organisms, plants cannot escape unwanted changes in the environment. The rapid human population explosion caused significant environmental problems. Heavy metals produced through various sources can cause severe damage to living organisms.
View Article and Find Full Text PDFAbiotic stresses, such as high temperature and drought conditions, greatly influence the development of plants and the quality and quantity of products. Barley ( L.) crop production is largely impacted by drought, affecting growth, yield, and ultimately the productivity of the crop in hot arid/semi-arid conditions.
View Article and Find Full Text PDFNitrogen (N) is often recognized as the primary limiting nutrient element for the growth and production of forests worldwide. Litterfall represents a significant pathway for returning nutrients from aboveground parts of trees to the soils and plays an essential role in N availability in different forest ecosystems. This study explores the N transformation processes under litterfall manipulation treatments in a Masson pine pure forest (MPPF), and Masson pine and Camphor tree mixed forest (MCMF) stands in subtropical southern China.
View Article and Find Full Text PDFSalinity is a major threat to agricultural productivity worldwide. The selection and evaluation of crop varieties that can tolerate salt stress are the main components for the rehabilitation of salt-degraded marginal soils. A field experiment was conducted to evaluate salinity tolerance potential, growth performance, carbon (δC) and nitrogen isotope composition (δN), intrinsic water use efficiency (iWUE), harvest index, and yield stability attributes in six barley genotypes (113/1B, 59/3A, N1-10, N1-29, Barjouj, Alanda01) at three salinity levels (0, 7, and 14 dS m).
View Article and Find Full Text PDFIn recent years, nano-contamination in the soil environment has aroused concern. But it is still uncertain whether the interactions of nano- and metal-pollutants would have a combined toxic effect on plants. In this study, we investigated the effects of joint exposure to zinc oxide nanoparticles (ZnO NPs) and Cd on the root tissue of Phytolacca americana L.
View Article and Find Full Text PDFMicroorganisms
September 2021
Soil salinity is a major problem affecting crop production worldwide. Lately, there have been great research efforts in increasing the salt tolerance of plants through the inoculation of plant growth-promoting endophytic bacteria. However, their ability to promote plant growth under no-stress and salinity-stress conditions remains largely uncertain.
View Article and Find Full Text PDFGlobally, agriculture sector is the significant source of greenhouse gases (GHGs) emissions into the atmosphere. To achieve the goal of limiting or mitigating these emissions, a rigorous abatement strategy with an additional focus on improving crop productivity is now imperative. Replacing traditional agriculture with soil conservation-based farming can have numerous ecological benefits.
View Article and Find Full Text PDFForest ecosystem carbon (C) storage primarily includes vegetation layers C storage, litter C storage, and soil C storage. The precise assessment of forest ecosystem C storage is a major concern that has drawn widespread attention in global climate change worldwide. This study explored the C storage of different layers of the forest ecosystem and the nutrient enrichment capacity of the vegetation layer to the soil in the Castanopsis eyeri natural forest ecosystem (CEF) present in the northeastern Hunan province, central China.
View Article and Find Full Text PDFNatural isotopic abundance in soil and foliar can provide integrated information related to the long-term alterations of carbon (C) and nitrogen (N) cycles in forest ecosystems. We evaluated total carbon (TC), total nitrogen (TN), and isotopic natural abundance of C (δC) and N (δN) in soil and foliar of coniferous plantation (CPF), natural broadleaved forest (NBF), and mixed forest stands at three different soil depths (i.e.
View Article and Find Full Text PDFGreenhouse gaseous (GHGs) emissions from cropland soils are one of the major contributors to global warming. However, the extent and pattern of these climatic breakdowns are usally determined by the management practices in-place. The use of biochar on cropland soils holds a great promise for increasing the overall crop productivity.
View Article and Find Full Text PDFTerrestrial ecosystems are widely contaminated by microplastics due to extensive usage and poor handling of plastic materials, but the subsequent fate and remediate strategy of these pollutants are far from fully understood. In soil environments, microplastics pose a potential threat to the survival, growth, and reproduction of soil microbiota that in turn threaten the biodiversity, function, and services of terrestrial ecosystems. Meanwhile, microorganisms are sensitive to microplastics due to the adaptability to changes in substrates and soil properties.
View Article and Find Full Text PDF