The effects of different terphenyl ligand substituents on the quintuple Cr-Cr bonding in arylchromium(I) dimers stabilized by bulky terphenyl ligands (Ar) were investigated. A series of complexes, ArCrCrAr (1-4; Ar = C6H2-2,6-(C6H3-2,6-iPr2)2-4-X, where X = H, SiMe3, OMe, and F), was synthesized and structurally characterized. Their X-ray crystal structures display similar trans-bent C(ipso)CrCrC(ipso) cores with short Cr-Cr distances that range from 1.
View Article and Find Full Text PDFAlthough in principle transition metals can form bonds with six shared electron pairs, only quadruply bonded compounds can be isolated as stable species at room temperature. Here we show that the reduction of {Cr(mu-Cl)Ar'}2 [where Ar' indicates C6H3-2,6(C6H3-2,6-Pri2)2 and Pr indicates isopropyl] with a slight excess of potassium graphite has produced a stable compound with fivefold chromium-chromium (Cr-Cr) bonding. The very air- and moisture-sensitive dark red crystals of Ar'CrCrAr' were isolated with greater than 40% yield.
View Article and Find Full Text PDFA sequence of first row transition metal(II) dithiolates M(SAr)(2) (M = Cr(1), Mn(2), Fe(3), Co(4), Ni(5) and Zn(6); Ar = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-Pr(i)(3))(2)) has been synthesized and characterized. Compounds 1-5 were obtained by the reaction of two equiv of LiSAr with a metal dihalide, whereas 6 was obtained by treatment of ZnMe(2) with 2 equiv of HSAr. They were characterized by spectroscopy, magnetic measurements, and X-ray crystallography.
View Article and Find Full Text PDF