Publications by authors named "Taiki Adachi"

Long-term studies are critical for ecological understanding, but they are underutilized as inclusive opportunities for training ecologists. We use our perspective from the Año Nuevo elephant seal programme along with surveys from community members to propose that long-term studies could be better leveraged to promote inclusive education and professional development in ecology. Drawing on our experiences as mentors and mentees, we demonstrate how long-term studies can use their resources, including rich data, robust logistics and extensive professional networks, to improve recruitment and retention of diverse groups of trainees.

View Article and Find Full Text PDF

Northern elephant seals (Mirounga angustirostris) have been integral to the development and progress of biologging technology and movement data analysis, which continue to improve our understanding of this and other species. Adult female elephant seals at Año Nuevo Reserve and other colonies along the west coast of North America were tracked annually from 2004 to 2020, resulting in a total of 653 instrument deployments. This paper outlines the compilation and curation process of these high-resolution diving and location data, now accessible in two Dryad repositories.

View Article and Find Full Text PDF

Instruments attached to animals ('biologgers') have facilitated extensive discoveries about the patterns, causes, and consequences of animal behavior. Here, we present examples of how biologging can deepen our fundamental understanding of ecosystems and our applied understanding of global change impacts by enabling tests of ecological theory. Applying the iterative process of science to biologging has enabled a diverse set of insights, including social and experiential learning in long-distance migrants, state-dependent risk aversion in foraging predators, and resource abundance driving movement across taxa.

View Article and Find Full Text PDF

Evaluating consequences of stressors on vital rates in marine mammals is of considerable interest to scientific and regulatory bodies. Many of these species face numerous anthropogenic and environmental disturbances. Despite its importance as a critical form of mortality, little is known about disease progression in air-breathing marine megafauna at sea.

View Article and Find Full Text PDF

Sleep is a crucial part of the daily activity patterns of mammals. However, in marine species that spend months or entire lifetimes at sea, the location, timing, and duration of sleep may be constrained. To understand how marine mammals satisfy their daily sleep requirements while at sea, we monitored electroencephalographic activity in wild northern elephant seals () diving in Monterey Bay, California.

View Article and Find Full Text PDF

The darkness of the deep ocean limits the vision of diving predators, except when prey emit bioluminescence. It is hypothesized that deep-diving seals rely on highly developed whiskers to locate their prey. However, if and how seals use their whiskers while foraging in natural conditions remains unknown.

View Article and Find Full Text PDF

An overexpression system of membrane-bound alcohol dehydrogenase (ADH) from Gluconobacter oxydans was constructed to examine its bioelectrocatalytic characteristics. The effects of cyanide (CN) addition on the kinetics of direct electron transfer (DET)-type bioelectrocatalysis by ADH were analyzed. CN enhanced the bioelectrocatalytic activity, while the catalytic activity in the solution remained unchanged, even in the presence of CN.

View Article and Find Full Text PDF

Small mesopelagic fishes dominate the world's total fish biomass, yet their ecological importance as prey for large marine animals is poorly understood. To reveal the little-known ecosystem dynamics, we identified prey, measured feeding events, and quantified the daily energy balance of 48 deep-diving elephant seals throughout their oceanic migrations by leveraging innovative technologies: animal-borne smart accelerometers and video cameras. Seals only attained positive energy balance after feeding 1000 to 2000 times per day on small fishes, which required continuous deep diving (80 to 100% of each day).

View Article and Find Full Text PDF

Like landscapes of fear, animals are hypothesized to strategically use lightscapes based on intrinsic motivations. However, longitudinal evidence of state-dependent risk aversion has been difficult to obtain in wild animals. Using high-resolution biologgers, we continuously measured body condition, time partitioning, three-dimensional movement, and risk exposure of 71 elephant seals throughout their 7-month foraging migrations ( = 16,000 seal days).

View Article and Find Full Text PDF

Seasonal resource pulses can have enormous impacts on species interactions. In marine ecosystems, air-breathing predators often drive their prey to deeper waters. However, it is unclear how ephemeral resource pulses such as near-surface phytoplankton blooms alter the vertical trade-off between predation avoidance and resource availability in consumers, and how these changes cascade to the diving behaviour of top predators.

View Article and Find Full Text PDF

Bioelectrocatalysis provides the intrinsic catalytic functions of redox enzymes to nonspecific electrode reactions and is the most important and basic concept for electrochemical biosensors. This review starts by describing fundamental characteristics of bioelectrocatalytic reactions in mediated and direct electron transfer types from a theoretical viewpoint and summarizes amperometric biosensors based on multi-enzymatic cascades and for multianalyte detection. The review also introduces prospective aspects of two new concepts of biosensors: mass-transfer-controlled (pseudo)steady-state amperometry at microelectrodes with enhanced enzymatic activity without calibration curves and potentiometric coulometry at enzyme/mediator-immobilized biosensors for absolute determination.

View Article and Find Full Text PDF

Knowledge of the diet of marine mammals is fundamental to understanding their role in marine ecosystems and response to environmental change. Recently, animal-borne video cameras have revealed the diet of marine mammals that make short foraging trips. However, novel approaches that allocate video time to target prey capture events is required to obtain diet information for species that make long foraging trips over great distances.

View Article and Find Full Text PDF

The direct electron transfer (DET)-type bioelectrocatalysis of flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase (GDH) from Aspergillus terreus (AtGDH) was carried out using porous gold (Au) electrodes and enzymatically implanted platinum nanoclusters (PtNCs). The porous Au electrodes were prepared by anodization of planar Au electrodes in a phosphate buffer containing glucose as a reductant. Moreover, PtNCs were generated into AtGDH by an enzymatic reduction of hexachloroplatinate (IV) ion.

View Article and Find Full Text PDF

This review summarizes the bioelectrocatalytic properties of d-fructose dehydrogenase (FDH), while taking into consideration its enzymatic characteristics. FDH is a membrane-bound flavohemo-protein with a molecular mass of 138 kDa, and it catalyzes the oxidation of d-fructose to 5-keto-d-fructose. The characteristic feature of FDH is its strong direct-electron-transfer (DET)-type bioelectrocatalytic activity.

View Article and Find Full Text PDF

Little is known about the foraging behavior of top predators in the deep mesopelagic ocean. Elephant seals dive to the deep biota-poor oxygen minimum zone (OMZ) (>800 m depth) despite high diving costs in terms of energy and time, but how they successfully forage in the OMZ remains largely unknown. Assessment of their feeding rate is the key to understanding their foraging behavior, but this has been challenging.

View Article and Find Full Text PDF

Foraging theory predicts that breath-hold divers adjust the time spent foraging at depth relative to the energetic cost of swimming, which varies with buoyancy (body density). However, the buoyancy of diving animals varies as a function of their body condition, and the effects of these changes on swimming costs and foraging behaviour have been poorly examined. A novel animal-borne accelerometer was developed that recorded the number of flipper strokes, which allowed us to monitor the number of strokes per metre swam (hereafter, referred to as strokes-per-metre) by female northern elephant seals over their months-long, oceanic foraging migrations.

View Article and Find Full Text PDF