Publications by authors named "Taik Min Lee"

Article Synopsis
  • To improve sensitivity in elastomers used for pressure sensors, pores were added to their structure, allowing for better thickness adjustment in response to external pressure changes.
  • The size, density, and distribution of these pores were controlled by emulsifying polydimethylsiloxane (PDMS) and water, achieving a significant increase in sensitivity under low-pressure conditions—a tenfold improvement over non-porous PDMS.
  • The effectiveness of this porous PDMS was demonstrated through experiments that detected dynamic loads on objects and monitored human heartbeats, showcasing its potential for practical pressure sensing applications.
View Article and Find Full Text PDF

One of the advantages of inkjet printing in digital manufacturing is the ability to use multiple nozzles simultaneously to improve the productivity of the processes. However, the use of multiple nozzles makes inkjet status monitoring more difficult. The jetting nozzles must be carefully selected to ensure the quality of printed products, which is challenging for most inkjet processes that use multi-nozzles.

View Article and Find Full Text PDF

Attempts have been made to introduce microstructures or wrinkles into the elastomer surface to increase the sensitivity of the elastomer. However, the disadvantage of this method is that when a force is applied to the pressure sensor, the contact area with the electrode is changed and the linear response characteristic of the pressure sensor is reduced. The biggest advantage of the capacitive pressure sensor using an elastomer is that it is a characteristic that changes linearly according to the change in pressure, so it is not suitable to introduce microstructures or wrinkles into the elastomer surface.

View Article and Find Full Text PDF

Micro- and nanofabrication on polymer substrate is integral to the development of flexible electronic devices, including touch screens, transparent conductive electrodes, organic photovoltaics, batteries, and wearable devices. The demand for flexible and wearable devices has spurred interest in large-area, high-throughput production methods. Roll-to-roll (R2R) nanoimprint lithography (NIL) is a promising technique for producing nano-scale patterns rapidly and continuously.

View Article and Find Full Text PDF

Roll-to-roll (R2R) printing methods are well known as additive, cost-effective, and ecologically friendly mass-production methods for processing functional materials and fabricating devices. However, implementing R2R printing to fabricate sophisticated devices is challenging because of the efficiency of material processing, the alignment, and the vulnerability of the polymeric substrate during printing. Therefore, this study proposes the fabrication process of a hybrid device to solve the problems.

View Article and Find Full Text PDF

Unpredictable web temperature distributions in the dryer and strain deviations in the cross-machine (CMD) and machine (MD) directions could hamper the manufacture of smooth functional layers on polymer-based webs through the roll-to-roll (R2R) continuous process system. However, research on this topic is limited. In this study, we developed a structural analysis model using the temperature distribution of the web as a boundary condition to analyze the drying mechanism of the dryer used in an R2R system.

View Article and Find Full Text PDF

In printed electronics, flawless printing quality is crucial for electronic device fabrication. While printing defects may reduce the performance or even cause a failure in the electronic device, there is a challenge in quality evaluation using conventional computer vision tools for printing defect recognition. This study proposed the computer vision approach based on artificial intelligence (AI) and deep convolutional neural networks.

View Article and Find Full Text PDF

With the development of technology, wireless and IoT devices are increasingly used from daily life to industry, placing demands on rapid and efficient manufacturing processes. This study demonstrates the fabrication of an IoT device using a roll-to-roll printing process, which could shorten the device fabrication time and reduce the cost of mass production. Here, the fabricated IoT device is designed to acquire data through the sensor, process the data, and communicate with end-user devices via Bluetooth communication.

View Article and Find Full Text PDF

Slot-die coating plays an important role in printed electronics, which are fabricated by stacking thin films and patterns. As electronic devices are being required to have higher performance, the importance of coating uniformity cannot be overestimated in the slot-die coating. The coating uniformity consists of two directions: nozzle direction, which is affected by the interior design of the head, and machine direction, which is majorly related to exterior operating conditions.

View Article and Find Full Text PDF

Copper nanowire (Cu NW)-based flexible transparent conductive electrodes (FTCEs) have been investigated in detail for use in various applications such as flexible touch screens, organic photovoltaics and organic light-emitting diodes. In this study, hexadecylamine (HDA) adsorbed onto the surface of NWs is changed into polyvinylpyrrolidone (PVP) via a ligand exchange process; the high-molecular-weight PVP enables high dispersion stability. Intense pulsed light (IPL) irradiation is used to remove organic species present on the surface of the NWs and to form direct connections between the NWs rapidly without any atmospheric control.

View Article and Find Full Text PDF

In printed electronics technology, the overlay accuracy of printed patterns is a very important issue when applying printing technology to the production of electric devices. In order to achieve accurate positioning of the printed patterns, this study proposes a novel precision reverse offset printing system. Furthermore, the study evaluates the effects of synchronization and printing force on position errors of the printed patterns, and presents methods of controlling synchronization and printing force so as to eliminate positional errors caused by the above-mentioned reasons.

View Article and Find Full Text PDF

A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm(2), exhibiting a power conversion efficiency (PCE) of 1.

View Article and Find Full Text PDF

Interest in the production of printed electronics using a roll-to-roll system has gradually increased due to its low mass-production costs and compatibility with flexible substrate. To improve the accuracy of roll-to-roll manufacturing systems, the movement of the web needs to be measured precisely in advance. In this paper, a novel measurement method is developed to measure the displacement and velocity of the web precisely and directly.

View Article and Find Full Text PDF

Printed electronics uses converging technologies, such as printing, fine mechanics, nanotechnology, electronics and other new technologies. Consequently, printed electronics raises additional health and safety concerns to those experienced in the traditional printing industry. This study investigated two printed electronics workplaces based on a walk-through survey and personal and area sampling.

View Article and Find Full Text PDF

The roll-printed gate, source, and drain electrodes of organic thin-film transistors (OTFTs) were fabricated by gravure printing or gravure-offset printing using patterned poly(dimethylsiloxane) (PDMS) stamp with various channel lengths and low-resistance silver (Ag) pastes on flexible 150 x 150 mm2 plastic substrates. Bottom-contact roll-printed OTFTs used polyvinylphenol (PVP) as polymeric dielectric and bis(triisopropyl-silylethynyl) pentacene (TIPS-pentacene) as organic semiconductor; they were formed by spin coating or ink-jetting. Depending on the choice of roll-printing method, the printed OTFTs obtained had a field-effect mobility of between 0.

View Article and Find Full Text PDF