Although an aberrant reduction in pancreatic β-cell mass contributes to the pathogenesis of diabetes, the mechanism underlying the regulation of β-cell mass is poorly understood. Here, we show that diacylglycerol kinase δ (DGKδ) is a key enzyme in the regulation of β-cell mass. DGKδ expression was detected in the nucleus of β-cells.
View Article and Find Full Text PDFOur previous study using apoptosis analysis suggested that Ca(2+) release through inositol 1,4,5-trisphosphate (IP3) receptors and the subsequent Ca(2+) influx through store-operated channels (SOCs) constitute a triggering signal for H2O2-induced β-cell apoptosis. In the present study, we further examined the obligatory role of early Ca(2+) responses in β-cell apoptosis induction. H2O2 induced elevation of the cytosolic Ca(2+) concentration ([Ca(2+)]c) consisting of two phases: an initial transient [Ca(2+)]c elevation within 30 min and a slowly developing one thereafter.
View Article and Find Full Text PDFTranscriptional Regulatory Networks (TRNs) coordinate multiple transcription factors (TFs) in concert to maintain tissue homeostasis and cellular function. The re-establishment of target cell TRNs has been previously implicated in direct trans-differentiation studies where the newly introduced TFs switch on a set of key regulatory factors to induce de novo expression and function. However, the extent to which TRNs in starting cell types, such as dermal fibroblasts, protect cells from undergoing cellular reprogramming remains largely unexplored.
View Article and Find Full Text PDF