Effects of surface ozone pollution on the terrestrial ecosystem and plant growth have drawn great attention. With the support of the free-air ozone concentration enrichment (O3-FACE) system located in Jiangdu City, Jiangsu Province, the effects of elevated atmospheric ozone (pO3) on the accumulation and distribution of dry matter and biomass carbon as well as the C/N ratio of crop residue of five wheat (Tritcium aestivum L.) varieties (Yangmai 15, Yangmai 16, Yannong 19, Yangfumai 2 and Jiaxing 002) were investigated in the Yangtze River delta, the target pO3 of which was 50% higher than the ambient pO3.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2011
With the support of free-air carbon dioxide enrichment (FACE) system and by using isotope 13C technique, and through planting wheat (Triticum aestivum L., C3 crop) on a soil having been planted with maize (Zea mays L., C4 crop) for many years, this paper studied the effects of elevated atmospheric CO2 and nitrogen application on the delta 13C value of soil emitted CO2 and the wheat rhizosphere respiration.
View Article and Find Full Text PDF