Publications by authors named "Taiichi Tsuyama"

Pannexin-3 (PANX3) is a member of the pannexin family of large-pore, ATP-permeable channels conserved across vertebrates. PANX3 contributes to various developmental and pathophysiological processes by permeating ATP and Ca ions; however, the structural basis of PANX3 channel function remains unclear. Here, we present the cryo-EM structure of human PANX3 at 2.

View Article and Find Full Text PDF

Adipose tissue is a central organ for controlling systemic metabolism both in invertebrates and vertebrates. Here, we have investigated the developmental processes of the adult-type fat body (AFB) in Drosophila. We have established genetic tools that allow visualization and genetic manipulations of cells in the AFB lineage from early in metamorphosis.

View Article and Find Full Text PDF

Mitochondria are key contributors to the etiology of diseases associated with neuromuscular defects or neurodegeneration. How changes in cellular metabolism specifically impact neuronal intracellular processes and cause neuropathological events is still unclear. We here dissect the molecular mechanism by which mitochondrial dysfunction induced by Prel aberrant function mediates selective dendritic loss in class IV dendritic arborization neurons.

View Article and Find Full Text PDF

Recessive mutations in the amyotrophic lateral sclerosis 2 (ALS2) gene have been linked to juvenile-onset ALS2. Although one of the molecular functions of the ALS2 protein is clearly the activation of Rab5, the mechanisms underlying the selective dysfunction and degeneration of motor neurons in vivo remain to be fully understood. Here, we focused on the ALS2 homologue of Drosophila melanogaster, isolated two independent deletions, and systematically compared phenotypes of the mutants with those of animals in which Rab5 function in identified neurons was abrogated.

View Article and Find Full Text PDF

Adenosine 5'-triphosphate (ATP) is the major energy currency of all living organisms. Despite its important functions, the spatiotemporal dynamics of ATP levels inside living multicellular organisms is unclear. In this study, we modified the genetically encoded Förster resonance energy transfer (FRET)-based ATP biosensor ATeam to optimize its affinity at low temperatures.

View Article and Find Full Text PDF

Dynamic morphological changes in mitochondria depend on the balance of fusion and fission in various eukaryotes, and are crucial for mitochondrial activity. Mitochondrial dysfunction has emerged as a common theme that underlies numerous neurological disorders, including neurodegeneration. However, how this abnormal mitochondrial activity leads to neurodegenerative disorders is still largely unknown.

View Article and Find Full Text PDF

Background: For the establishment of functional neural circuits that support a wide range of animal behaviors, initial circuits formed in early development have to be reorganized. One way to achieve this is local remodeling of the circuitry hardwiring. To genetically investigate the underlying mechanisms of this remodeling, one model system employs a major group of Drosophila multidendritic sensory neurons - the dendritic arborization (da) neurons - which exhibit dramatic dendritic pruning and subsequent growth during metamorphosis.

View Article and Find Full Text PDF
Article Synopsis
  • Dendrites play a crucial role in how neurons collect and process inputs, with their structure influencing input type and quantity.
  • Research using Drosophila melanogaster model neurons demonstrated that mutations in specific motor-protein genes lead to reduced dendritic size and altered branching patterns.
  • The study highlights a relationship between motor proteins and endosome dynamics in shaping dendrite structure, suggesting that endosomal transport is vital for proper dendritic branch development.
View Article and Find Full Text PDF