Publications by authors named "Taihua Zhang"

The field of electronic skin has received considerable attention due to its extensive potential applications in areas including tactile sensing and health monitoring. With the development of electronic skin devices, electronic skin can be attached to the surface of human skin for long-term health monitoring, which makes comfort an essential factor that cannot be ignored in the design of electronic skin. Therefore, this paper proposes an assessment method for evaluating the comfort of electronic skin based on neurodynamic analysis.

View Article and Find Full Text PDF

Identifying valuable information within the extensive texts documented in natural language presents a significant challenge in various disciplines. Named Entity Recognition (NER), as one of the critical technologies in text data processing and mining, has become a current research hotspot. To accurately and objectively review the progress in NER, this paper employs bibliometric methods.

View Article and Find Full Text PDF

The sand cat is a creature suitable for living in the desert. Sand cat swarm optimization (SCSO) is a biomimetic swarm intelligence algorithm, which inspired by the lifestyle of the sand cat. Although the SCSO has achieved good optimization results, it still has drawbacks, such as being prone to falling into local optima, low search efficiency, and limited optimization accuracy due to limitations in some innate biological conditions.

View Article and Find Full Text PDF

The reptile search algorithm is an effective optimization method based on the natural laws of the biological world. By restoring and simulating the hunting process of reptiles, good optimization results can be achieved. However, due to the limitations of natural laws, it is easy to fall into local optima during the exploration phase.

View Article and Find Full Text PDF

Thin-rim gears are widely used in industrial fields such as aerospace and electric vehicles due to the advantage of light weight. Yet, the root crack fracture failure of thin-rim gears significantly limits their application and further affects the reliability and safety of high-end equipment. In this work, the root crack propagation behavior of thin-rim gears is experimentally and numerically investigated.

View Article and Find Full Text PDF

Epidermal electronic systems (EESs) are a representative achievement for utilizing the full advantages of ultra-thin, stretchable and conformal attachment of flexible electronics, and are extremely suitable for integration with human physiological systems, especially in medical hyperthermia. The stretchable heater with stable electrical characteristics and a uniform temperature field is an irreplaceable core component. The inorganic stretchable heater has the advantage of maintaining stable electrical characteristics under tensile deformation.

View Article and Find Full Text PDF

Skin-inspired flexible wearable acceleration sensors attract much attention due to their advantages of portability, personalized and comfortable experience, and potential application in healthcare monitoring, human-machine interfaces, artificial intelligence, and physical sports performance evaluation. This paper presents a flexible wearable acceleration sensor for monitoring human motion by introducing the island-bridge configuration and serpentine interconnects. Compared with traditional wearable accelerometers, the flexible accelerometer proposed in this paper improves the wearing comfort while reducing the cost of the device.

View Article and Find Full Text PDF

Compared with other physiotherapy devices, epidermal electronic systems (EES) used in medical applications such as hyperthermia have obvious advantages of conformal attachment, lightness and high efficiency. The stretchable flexible electrode is an indispensable component. The structurally designed flexible inorganic stretchable electrode has the advantage of stable electrical properties under tensile deformation and has received enough attention.

View Article and Find Full Text PDF

Recently, instrumental nanoindentation has been widely applied to detect time-dependent plastic deformation or creep behavior in numerous materials, particularly thin films and heterogeneous materials. However, deformation mechanism at nanoindentation holding stage has not been well revealed hitherto. In the current work, nanoindentation holding tests with high loads were performed on a brittle LiTaO single crystal.

View Article and Find Full Text PDF

Accurate evaluation of the shell elastic modulus of microcapsules is of great significance to understanding their performance during production, processing, and applications. In this work, microcompression was employed to investigate the elastic behaviors of a single microcapsule. It was modeled as a microsphere with a core-shell structure compressed between two rigid plates.

View Article and Find Full Text PDF

We systematically studied nanoindentation size effect on creep deformation in a La-based metallic glassy film, including holding depth effect and indenter size effect. Creep displacement was mainly dependent on both holding strain and deformation volume beneath indenter. Under elastic holding, creep strain was merely holding strain-dependent.

View Article and Find Full Text PDF

Relying on nanoindentation technology, we investigated the elastic-to-plastic transition via first pop-in event and estimated the corresponding shear stress for incipient plasticity, i.e., yielding in the three typical orientations, i.

View Article and Find Full Text PDF

The crystal orientation effect on mechanical heterogeneity of LiTaO single crystals is well known, whilst the time-dependent plastic behavior, i.e., creep is still short of understanding.

View Article and Find Full Text PDF

Room-temperature creep tests are performed at the plastic regions of two different metallic glassy films under Berkovich nanoindetation. Relying on the strain rate sensitivity of the steady-state creep curve, shear transformation zone (STZ) size is estimated based on the cooperative shear model (CSM). By applying various indentation depths, loading rates, and holding times, the testing effects on the STZ size of metallic glasses are systematically studied.

View Article and Find Full Text PDF

In order to investigate the effect of applied stress on mechanical properties in metallic glasses, nanoindentation tests were conducted on elastically bent Zr-Cu-Ag-Al metallic glasses with two different structure states. From spherical curves, elastic modulus was found to be independent on applied stress. Hardness decreased by ~8% and ~14% with the application of 1.

View Article and Find Full Text PDF

Objective: To explore the contents and enrichment status of the trace elements in Boju by using ICP-MS.

Methods: Trace elements of the different parts of Boju and the soil near the roots were determined by microwave digestion-ICP-MS and the correlation of the data obtained was tested by using the statistical software.

Results: There were differences among the contents of the eight elements in the different parts of Boju and the soil; there were obvious differences in the enrichment factor of eight elements in the different parts of Boju, which ranged from 0.

View Article and Find Full Text PDF

A novel torsion apparatus for micro-scale specimens is developed based on electromagnetism, in which a coil-magnet component is used for actuating and torque measuring. When the current gets through the coil, the torque, produced by Ampere force, can be easily measured by recording the current. A laser displacement sensor is applied to measure the rotation angle.

View Article and Find Full Text PDF

Carbon nanotubes have unprecedented mechanical properties as defect-free nanoscale building blocks, but their potential has not been fully realized in composite materials due to weakness at the interfaces. Here we demonstrate that through load-transfer-favored three-dimensional architecture and molecular level couplings with polymer chains, true potential of CNTs can be realized in composites as initially envisioned. Composite fibers with reticulate nanotube architectures show order of magnitude improvement in strength compared to randomly dispersed short CNT reinforced composites reported before.

View Article and Find Full Text PDF

We report the direct synthesis of strong, highly conducting, and transparent single-walled carbon nanotube (SWNT) films. Systematically, tests reveal that the directly synthesized films have superior electrical and mechanical properties compared with the films made from a solution-based filtration process: the electrical conductivity is over 2000 S/cm and the strength can reach 360 MPa. These values are both enhanced by more than 1 order.

View Article and Find Full Text PDF