Publications by authors named "Taihong Cheng"

The effects of the design and optimization of trapezoidal channels and baffles on the net power density of proton-exchange membrane fuel cells (PEMFCs) are studied. The significant effects of the length of upper and lower sides of the trapezoidal cross section and the number and position of baffles on the net power density of PEMFC have been investigated. It is found that at the same flow rate, changing the effective contact surface between the flow channel and the gas diffusion layer can tremendously improve the current density of fuel cells; moreover, the performance of a PEMFC based on the addition of a baffle can be further improved.

View Article and Find Full Text PDF

Cylinder-shaped NaY zeolite was used as an adsorbent for eradicating both heavy metal ions (Cu, Zn, Ni, and Co) and proteins from the waste streams. As a pseudo-metal ion affinity adsorbent, NaY zeolite was used in the capture of heavy metal ions in the first stage. The amount (molar basis) of metal ions adsorbed onto NaY zeolite decreased in the order of Cu > Zn > Co > Ni.

View Article and Find Full Text PDF

To quantify the net greenhouse gas emissions (NGHGE) of typical open-field vegetables production in China and analyze potential mitigation measures, the life cycle assessment (LCA) method was used to calculate the agricultural inputs, carbon sequestration, and greenhouse gas emissions of open-field tomato, cucumber, Chinese cabbage, and radish production in China based on national statistical data. The results showed that greenhouse gas emissions of typical vegetable production in China were much higher than the associated carbon sequestration, suggesting that they were net greenhouse gas emitters. The weighted average net greenhouse gas emissions of open-field tomato, cucumber, Chinese cabbage, and radish production when expressed on an area basis were 4149, 3718, 3780, and 2427 kg·hm(CO-eq), respectively.

View Article and Find Full Text PDF

A thermo-responsive comb-like polymer with chitosan as the backbone and pendant poly(N-isopropylacrylamide) (PNIPAM) groups has been synthesized by grafting PNIPAM-COOH with a single carboxy end group onto chitosan through amide bond linkages. The copolymer exhibits reversible temperature-responsive soluble-insoluble characteristics with the lower critical solution temperature (LCST) being at around 30 degrees C. Results from SEM observations confirm a porous 3D hydrogel structure with interconnected pores ranging from 10 to 40 microm at physiological temperature.

View Article and Find Full Text PDF