In vat polymerization (VP) 3D printing, there is an urgent need to expand characterization efforts for resins derived from natural resources to counter the increasing consumption of fossil fuels required to synthesize conventional monomers. Here, we apply multiscale mechanical characterization techniques to interrogate a 3D printed biobased copolymer along a controlled range of monomer ratios. We varied the concentration of two dissimilar monomers to derive structural information about the polymer networks.
View Article and Find Full Text PDFA fine control over different dimensional scales is a challenging target for material science since it could grant control over many properties of the final material. In this study, we developed a multivariable additive manufacturing process, direct ink write printing, to control different architectural features from the nano- to the millimeter scale during extrusion. Chitin-based gel fibers with a water content of around 1500% were obtained extruding a polymeric solution of chitin into a counter solvent, water, inducing instant solidification of the material.
View Article and Find Full Text PDFThe remarkable ability of biological systems to sense and adapt to complex environmental conditions has inspired new materials and novel designs for next-generation wearable devices. Hydrogels are being intensively investigated for their versatile functions in wearable devices due to their superior softness, biocompatibility, and rapid stimulus response. This review focuses on recent strategies for developing bioinspired hydrogel wearable devices that can accommodate mechanical strain and integrate seamlessly with biological systems.
View Article and Find Full Text PDF