Publications by authors named "Taiga Suzuki"

Determining short-lived intermediate structures in chemical reactions is challenging. Although ultrafast spectroscopic methods can detect the formation of transient intermediates, real-space structures cannot be determined directly from such studies. Time-resolved serial femtosecond crystallography (TR-SFX) has recently proven to be a powerful method for capturing molecular changes in proteins on femtosecond timescales.

View Article and Find Full Text PDF

The development of solid biomaterials has rapidly progressed in recent years in applications in bionanotechnology. The immobilization of proteins, such as enzymes, within protein crystals is being used to develop solid catalysts and functionalized materials. However, an efficient method for encapsulating protein assemblies has not yet been established.

View Article and Find Full Text PDF

Sigmoid diverticulitis can potentially lead to the development of pelvic abscesses. Mortality rate from intra-abdominal abscesses is as high as 35%, and patients with diverticulitis complicated by an abscess are at a high risk of recurrent diverticulitis. Recently, image-guided drainage has been performed using computed tomography or ultrasonography for the treatment of pelvic abscesses.

View Article and Find Full Text PDF

Nontrivial quantum states can be realized in the vicinity of the quantum critical point (QCP) in many strongly correlated electron systems. In particular, an emergence of unconventional superconductivity around the QCP strongly suggests that the quantum critical fluctuations play a central role in the superconducting pairing mechanism. However, a clear signature of the direct coupling between the superconducting pairing states and the quantum criticality has not yet been elucidated by the microscopic probes.

View Article and Find Full Text PDF

Portosystemic shunts with cirrhosis may lead to hepatic encephalopathy (HE), which is often pharmacotherapy-resistant. We report a case of a 66-year-old female patient diagnosed with alcoholic cirrhosis and uncontrolled HE. She underwent percutaneous transhepatic obliteration (PTO) for treatment of a large portosystemic shunt from the left and right gastric veins to the azygos vein.

View Article and Find Full Text PDF

Amphotericin B, an antifungal drug with a long history of use, forms fungicidal ion-permeable channels across cell membranes. Using solid-state nuclear magnetic resonance spectroscopy and molecular dynamics simulations, we experimentally elucidated the three-dimensional structure of the molecular assemblies formed by this drug in membranes in the presence of the fungal sterol ergosterol. A stable assembly consisting of seven drug molecules was observed to form an ion conductive channel.

View Article and Find Full Text PDF

An all-fiber orbital angular momentum (OAM) mode generator enabling simultaneous generation of the second- and the third-order OAM modes with conversion efficiencies larger than 95% has been proposed and experimentally demonstrated, which is realized by using a high-order helical long-period fiber grating (HLPG) written in a thinned four-mode fiber. This is the first time, to the best of our knowledge, that two such OAM modes have been simultaneously obtained at wavelengths ranging from 1450 to 1620 nm by using only one fiber component, i.e.

View Article and Find Full Text PDF

The clinically important antibiotic amphotericin B (AmB) is a membrane-active natural product that targets membrane sterol. The antimicrobial activity of AmB is generally attributed to its membrane permeabilization, which occurs when a pore is formed across a lipid bilayer. In this study, the molecular orientation of AmB was investigated using solid-state nuclear magnetic resonance (NMR) to better understand the mechanism of antifungal activity.

View Article and Find Full Text PDF

Precise control of gene expression using an artificial gene circuit is a major challenge in the application of synthetic biology. Here, we designed a hypoxia-responsive transgene expression system by combining a hypoxia-inducible RTP801 promoter and a tetracycline-responsive transactivator fused with an oxygen-dependent degradation domain (TA-ODD). The reporter gene expression was highly induced by hypoxia when a transactivator-expression plasmid, pRTP801/TA-ODD, harboring a TA-ODD gene driven by the RTP801 promoter, was cotransfected with a reporter plasmid, pTRE/EGFP, harboring an EGFP gene controlled under the transactivator-responsive promoter.

View Article and Find Full Text PDF

Objective: We examined whether stair climbing-descending exercise (ST-EX), a convenient method to increase physical activity in daily life, for a short period would acutely improve the postprandial blood glucose (BG) response in people with type 2 diabetes (T2D).

Methods: 16 people with T2D (age 65.4±1.

View Article and Find Full Text PDF

We constructed a DNA damage-responsive transgene expression system mediated by the p53 promoter. We incorporated a transactivation system to generate transcriptional amplification via a positive feedback loop. Higher levels of DNA damage-responsive transgene expression were observed when transactivation was active.

View Article and Find Full Text PDF

Sox9 is a transcription factor that is required for tissue development in mammals. In general, such transcription factors require co-regulators for precise temporal and spatial control of the activation and inactivation of the numerous genes necessary for precise development during embryogenesis. Here we identify a new Sox9 co-regulator: Using affinity chromatography with immobilized Sox9 protein, we identified exportin 4 (Exp4) as an interacting protein of Sox9 in human cultured cells.

View Article and Find Full Text PDF

The medaka, Oryzias latipes, like other fish, have two distinct aromatase genes, the ovarian (cyp19a1) and brain (cyp19a2) forms. We previously reported that Ad4BP/SF-1, a member of the NR5A subfamily, plays an important role in the regulation of cyp19a1 expression in medaka ovarian follicles during vitellogenesis. In the present study, we investigated whether liver receptor homologue-1 (LRH-1), another NR5A subfamily member, is involved in the regulation of cyp19a2 expression in the medaka brain.

View Article and Find Full Text PDF

Dosage-sensitive sex reversal-adrenal hypoplasia congenita critical region on the X chromosome, gene 1 (Dax-1, NR0B1) is an orphan nuclear receptor that represses transcription by Ad4 binding protein/steroidogenic factor 1 (Ad4BP/SF-1, NR5A1). Observations on human diseases and the phenotypes of mice, in which the corresponding genes have been disrupted, have elucidated essential roles of these two nuclear receptors in differentiation of steroidogenic tissues. However, little is known about how the functions of these factors are regulated.

View Article and Find Full Text PDF

The orphan receptor Ad4BP/SF-1 (NR5A1) is a constitutive activator, and its activity is repressed by another orphan receptor, Dax-1 (NR0B1). In the present study, we investigated the molecular mechanisms underlying this repression by Dax-1. Yeast two-hybrid and transient-transfection assays confirmed the necessity of three LXXLL-related motifs in Dax-1 for interaction with and repression of Ad4BP/SF-1.

View Article and Find Full Text PDF

Piscine DAX1 and SHP cDNAs with an open reading frame encoding 296 and 258 amino acid residues, respectively, as well as SHP partial gene fragment, were cloned from Nile tilapia. Phylogenetic analyses of DAX1s, SHPs, and homologous EST fragments indicate that DAX1 and SHP are conserved in gene structure and are present throughout vertebrates. A single band of approximately 1.

View Article and Find Full Text PDF

It is well known that signals from growth factors regulate gene transcription thus initiating certain steps of cellular and tissue differentiation during development. In gonad differentiation several transcription factors have been identified as the genes underlying human diseases displaying gonadal defects and as the genes necessary for gonad differentiation as demonstrated by gene disruption studies. In addition, one of the growth factors, WNT4, is known to be involved in gonadal differentiation.

View Article and Find Full Text PDF