Silicon photonics technology has attracted considerable attention because of the growing need for high-bit-rate optical interconnections. The low coupling efficiency resulting from the difference in spot size between silicon photonic chips and single-mode fibers remains a challenging issue. This study demonstrated a new, to the best of our knowledge, fabrication method for a tapered-pillar coupling device using a UV-curable resin on a single-mode optical fiber (SMF) facet.
View Article and Find Full Text PDFSilicon photonics (SiPh) technology has gained considerable attention as a result of the growing demand for high-bit-rate optical interconnections. Low coupling efficiencies, resulting from the difference in spot size between silicon photonic chips and single-mode fibers (SMFs), remains a challenging issue. To solve this problem, we fabricated a novel, to the best of our knowledge, polymer spot size expander (SSE) device on the end face of a silicon chip.
View Article and Find Full Text PDF