Publications by authors named "Taiga Kurihara"

Lysophosphatidylethanolamine (LPE) is a bioactive lipid mediator involved in diverse cellular functions. In this study, we investigated the effects of three LPE species, 1-palmitoyl LPE (16:0 LPE), 1-stearoyl LPE (18:0 LPE), and 1-oleoyl LPE (18:1 LPE) on pre-osteoblast MC3T3-E1 cells. All LPE species stimulated cell proliferation and activated the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) 1/2.

View Article and Find Full Text PDF

Neurexins (NRXNs) are key presynaptic cell adhesion molecules that regulate synapse formation and function via trans-synaptic interaction with postsynaptic ligands. Here, we generate cerebellar granule cell (CGC)-specific Nrxn triple-knockout (TKO) mice for complete deletion of all NRXNs. Unexpectedly, most CGCs die in these mice, and this requirement for NRXNs for cell survival is reproduced in cultured CGCs.

View Article and Find Full Text PDF

Six mutations in the salt-inducible kinase 1 (SIK1)-coding gene have been identified in patients with early infantile epileptic encephalopathy (EIEE-30) accompanied by autistic symptoms. Two of the mutations are non-sense mutations that truncate the C-terminal region of SIK1. It has been shown that the C-terminal-truncated form of SIK1 protein affects the subcellular distribution of SIK1 protein, tempting to speculate the relevance to the pathophysiology of the disorders.

View Article and Find Full Text PDF

Lysophosphatidylethanolamines (LPEs) are bioactive lysophospholipids that have been suggested to play important roles in several biological processes. We performed a quantitative analysis of LPE species and showed their composition in mouse brain. We examined the roles of oleoyl-LPE (18:1 LPE), which is one of the abundant LPE species in brain.

View Article and Find Full Text PDF

Neurite outgrowth is important in neuronal circuit formation and functions, and for regeneration of neuronal networks following trauma and disease in the brain. Thus, identification and characterization of the molecules that regulate neurite outgrowth are essential for understanding how brain circuits form and function and for the development of treatment of neurological disorders. In this study, we found that structurally different lysophosphatidylethanolamine (LPE) species, palmitoyl-LPE (16:0 LPE) and stearoyl-LPE (18:0 LPE), stimulate neurite growth in cultured cortical neurons.

View Article and Find Full Text PDF

CRISPR/Cas9-mediated gene knock-in in in vivo neurons using in utero electroporation is a powerful technique, but the knock-in efficiency is generally low. We previously demonstrated that co-transfection with RAD51, a key molecule of the initial step of homology-directed repair (HDR), expression vector increased EGFP knock-in efficiency in the β-actin site up to 2.5-fold in the pyramidal neurons in layer 2/3 of the somatosensory cortex of mouse brain.

View Article and Find Full Text PDF

Gene knock-in using the CRISPR/Cas9 system can be achieved in a specific population of neurons in the mouse brain, by using in utero electroporation to introduce DNA fragments into neural progenitor cells. Using this strategy, we previously knocked-in the EGFP coding sequence into the N-terminal region of the β-actin gene specifically in the pyramidal neurons in layer 2/3 of the somatosensory cortex. However, the knock-in efficiency was less than 2% of the transfected neurons.

View Article and Find Full Text PDF

This article was originally published under standard licence, but has now been made available under a [CC BY 4.0] license. The PDF and HTML versions of the paper have been modified accordingly.

View Article and Find Full Text PDF

Calcium/calmodulin-dependent serine protein kinase (CASK) is a membrane-associated guanylate kinase (MAGUK) protein that is associated with neurodevelopmental disorders. CASK is thought to have both pre- and postsynaptic functions, but the mechanism and consequences of its functions in the brain have yet to be elucidated, because homozygous CASK-knockout (CASK-KO) mice die before brain maturation. Taking advantage of the X-chromosome inactivation (XCI) mechanism, here we examined the synaptic functions of CASK-KO neurons in acute brain slices of heterozygous CASK-KO female mice.

View Article and Find Full Text PDF

Neurexins are a family of presynaptic single-pass transmembrane proteins that act as synaptic organizers in mammals. The neurexins consist of three genes (NRXN1, NRXN2, and NRXN3), each of which produces a longer α- and shorter β-form. Genomic alterations in NRXN genes have been identified in a wide variety of neuropsychiatric disorders, including autism spectrum disorders (ASD), schizophrenia, intellectual disability (ID), and addiction.

View Article and Find Full Text PDF

Genome editing is a powerful technique for studying gene functions. CRISPR/Cas9-mediated gene knock-in has recently been applied to various cells and organisms. Here, we successfully knocked in an EGFP coding sequence at the site immediately after the first ATG codon of the β-actin gene in neurons in the brain by the combined use of the CRISPR/Cas9 system and in utero electroporation technique, resulting in the expression of the EGFP-tagged β-actin protein in cortical layer 2/3 pyramidal neurons.

View Article and Find Full Text PDF