Are we truly losing neurons as we grow older? If yes, why, and how can the lost neurons be replaced or compensated for? Is so-called adult neurogenesis (ANG) still a controversial process, particularly in the human cerebral cortex? How do adult-born neurons -if proven to exist- contribute to brain functions? Is adult neurogenesis a disease-relevant process, meaning that neural progenitor cells are dormant in adulthood, but they may be reactivated, for example, following stroke? Is the earnest hope to cure neurological diseases justifying the readiness to accept ANG claim uncritically? These are all fundamental issues that have not yet been firmly explained. Although it is completely understandable that some researchers believe that we can add new neurons to our inevitably deteriorating brain, the brain regeneration process still possesses intellectually and experimentally diverting views, as until now, there has been significant confusion about the concept of ANG. This paper is not intended to be an extensively analytical review distilling all findings and conclusions presented in the ANG literature.
View Article and Find Full Text PDFBackground: Tissue stem cells are confined within a special microenvironment called niche. Stem cells in such a niche are supplied with nutrients and contacted by other cells to maintain their characters and also to keep or expand their population size. Besides, oxygen concentration is a key factor for stem cell niche.
View Article and Find Full Text PDFWe describe here a novel assay that determines the total a+ntioxidative activities of known antioxidants and antioxidants in beverages. The method employs the substrate 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) that yields the colored product 3,5,3',5'-tetrabromoazobenzene sulfate sodium salt (azo-TBBS). The amounts of azo-TBBS are measured using HPLC and then used to calculate total antioxidative capacity (TAC) values.
View Article and Find Full Text PDFStatus epilepticus (SE) is a neurological emergency, and delayed management can lead to higher morbidity and mortality. It is thought that prolonged seizures stimulate stem cells in the hippocampus and that epileptogenesis may arise from aberrant connections formed by newly born cells, while others have suggested that the acute neuroinflammation and gliosis often seen in epileptic hippocampi contribute to hyperexcitability and epilepsy development. Previous studies have identified the expression of homeodomain-only protein (HOP) in the hippocampal dentate gyrus (HDG) and the heart.
View Article and Find Full Text PDFIn the original publication figure parts 8c, 8f, and 8i were mixed up and thus incorrectly labeled. Here is a corrected version with the parts properly labeled.
View Article and Find Full Text PDFBrain Struct Funct
January 2018
Neurogenesis occurs during the embryonic period and ceases soon after birth in the neocortex, but continues to occur in the hippocampus even in the adult. The embryonic neocortex has radial glia or progenitor cells expressing brain lipid-binding protein (BLBP), whereas the adult hippocampus has radial granule progenitor cells expressing BLBP and glial fibrillary acidic protein (GFAP) in the subgranular zone. We previously found that embryonic hippocampal granule progenitor cells express GFAP, but not BLBP, indicating that these cells are different from both embryonic neocortical and adult granule progenitor cells.
View Article and Find Full Text PDFIn the developing hippocampus, granule cell progenitors (GCPs) arising in the ventricular zone (VZ) migrate to the subpial region, and form the granule cell layer (GCL) of the dentate gyrus (DG). To understand the mechanism of GCL formation, we investigated the dynamics and function of CXCR4 which is expressed by the GCPs and is a receptor of the CXCL12 chemokine secreted by cells surrounding the DG. In the VZ, CXCR4 was expressed on the plasma membrane of the GCPs.
View Article and Find Full Text PDFAging-related neurodegenerative disorders are closely associated with mitochondrial dysfunction and oxidative stresses and their incidence tends to increase with aging. Brain is the most vulnerable to reactive species generated by a higher rate of oxygen consumption and glucose utilization compared to other organs. Electrochemically reduced water (ERW) was demonstrated to scavenge reactive oxygen species (ROS) in several cell types.
View Article and Find Full Text PDFInsulin-producing cells express limited activities of anti-oxidative enzymes. Therefore, reactive oxygen species (ROS) produced in these cells play a crucial role in cytotoxic effects. Furthermore, diabetes mellitus (DM) development is closely linked to higher ROS levels in insulin-producing cells.
View Article and Find Full Text PDFElectrolyzed reduced water, which is capable of scavenging reactive oxygen species, is attracting recent attention because it has shown improved efficacy against several types of diseases including diabetes mellitus. Alloxan produces reactive oxygen species and causes type 1 diabetes mellitus in experimental animals by irreversible oxidative damage to insulin-producing β-cells. Here, we showed that electrolyzed reduced water prevented alloxan-induced DNA fragmentation and the production of cells in sub-G1 phase in HIT-T15 pancreatic β-cells.
View Article and Find Full Text PDFReactive oxygen species (ROS) cause irreversible damage to biological macromolecules, resulting in many diseases. Reduced water (RW) such as hydrogen-rich electrolyzed reduced water and natural reduced waters like Hita Tenryosui water in Japan and Nordenau water in Germany that are known to improve various diseases, could protect a hamster pancreatic beta cell line, HIT-T15 from alloxan-induced cell damage. Alloxan, a diabetogenic compound, is used to induce type 1 diabetes mellitus in animals.
View Article and Find Full Text PDFIn the two-stage cell transformation theory, cancer cells first receive initiation, which is mainly caused by DNA damage, and then promotion, which enhances transformation. Murine Balb/c 3T3 cells are widely used for transformation experiments because they lose contact inhibition ability when transformed. Electrolyzed reduced water (ERW), which is produced near a cathode during electrolysis of water, is an alkaline drinking water that is beneficial to health.
View Article and Find Full Text PDFThere are few reports on the physiological effects of metal nanoparticles (nps), especially with respect to their functions as scavengers for superoxide anion radical (O2(.-)) and hydroxyl radical (.OH).
View Article and Find Full Text PDFVascular endothelial growth factor (VEGF) is a key mediator of tumor angiogenesis. Tumor cells are exposed to higher oxidative stress compared to normal cells. Numerous reports have demonstrated that the intracellular redox (oxidation/reduction) state is closely associated with the pattern of VEGF expression.
View Article and Find Full Text PDF