Cyclometalated iridium(III) complexes have been used in various optical materials, including organic light-emitting diodes (OLEDs) and photocatalysts, and a deeper understanding and prediction of their luminescence quantum yields (LQYs) greatly aid in accelerating material design. In this study, we integrated density functional theory (DFT) calculations with machine learning (ML) techniques to extract factors controlling LQY. Although a substantial data set of Ir(III) complexes and their LQYs is indispensable for constructing accurate ML models to predict LQYs, generating this type of data set is challenging due to the complexities associated with calculations of LQYs.
View Article and Find Full Text PDFBy means of an initial electrochemical carbon dioxide reduction reaction (eCORR), both the reaction current and Faradaic efficiency of the eCORR on boron-doped diamond (BDD) electrodes were significantly improved. Here, this effect is referred to as the self-activation of BDD. Generally, the generation of carbon dioxide radical anions (CO ) is the most recognized pathway leading to the formation of hydrocarbons and oxygenated products.
View Article and Find Full Text PDFAqueous electrolytes have the potential to overcome some of the safety issues associated with current Li-ion batteries intended for large-scale applications such as stationary use. We recently discovered a lithium-salt dihydrate melt, viz., Li(TFSI)(BETI)·2HO, which can provide a wide potential window of over 3 V; however, its reductive stability strongly depends on the electrode material.
View Article and Find Full Text PDFComputational models including electrode polarization can be essential to study electrode/electrolyte interfacial phenomena more realistically. We present here a constant-potential classical molecular dynamics simulation method based on the extended Lagrangian formulation where the fluctuating electrode atomic charges are treated as independent dynamical variables. The method is applied to a graphite/ionic liquid system for the validation and the interfacial kinetics study.
View Article and Find Full Text PDFPotential of zero charge (PZC) is essential in electrochemistry to understand physical and chemical phenomena at the interface between an electrode and a solution. A negative potential shift from the work function to the PZC has been experimentally observed in a metal/ionic liquid (IL) system, but the mechanism remains unclear and controversial. In this paper we provide valuable insight into the mechanism on the potential shift in the Au/IL (1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide: [BMIM][TFSA]) system using a computational approach combining classical molecular dynamics simulations and first-principles calculations.
View Article and Find Full Text PDFThermal storage, a technology that enables us to control thermal energy, makes it possible to reuse a huge amount of waste heat, and materials with the ability to treat larger thermal energy are in high demand for energy-saving societies. Sugar alcohols are now one promising candidate for phase change materials (PCMs) because of their large thermal storage density. In this study, we computationally design experimentally unknown non-natural sugar alcohols and predict their thermal storage density as a basic step toward the development of new high performance PCMs.
View Article and Find Full Text PDFDespite strong electrostatic repulsion, like-charged ions in aqueous solution can effectively attract each other via ion-water interactions. In this paper we investigate such an effective interaction of like-charged ions in water by using the 3D-RISM-SCF method (i.e.
View Article and Find Full Text PDFIn biomembranes a variety of antioxidants work to suppress oxidative damage. Vitamin E and ubiquinol are among the most important lipid-soluble antioxidants, which trap lipid peroxyl radicals directly or work cooperatively in the regeneration of vitamin E radicals by ubiquinol. Here, we investigate the latter regeneration reaction by using variational transition-state theory with multidimensional tunneling corrections.
View Article and Find Full Text PDFProton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) reactions of the phenoxyl/phenol couple are studied theoretically by using wave function theory (WFT) as well as DFT methods. At the complete active space self-consistent field (CASSCF) level, geometry optimization is found to give two transition states (TSs); one is the PCET type with two benzene rings being nearly coplanar, and the other is the HAT type with two benzene rings taking a stacking structure. Geometry optimization at the (semilocal) DFT level, on the other hand, is found to give only one transition state (i.
View Article and Find Full Text PDF