Tumor-associated macrophages (TAMs) promote cancer cell proliferation and metastasis, as well as anti-tumor immune suppression. Recent studies have shown that tumors enhance the recruitment and differentiation of TAMs, but the detailed mechanisms have not been clarified. We thus examined the influence of cancer cells on the differentiation of monocytes to TAM subsets, including CD163, CD204, and CD206 cells, in oral squamous cell carcinoma (OSCC) using immunohistochemistry, flow cytometry, and a cytokine array.
View Article and Find Full Text PDFWe previously reported that epithelial-to-mesenchymal transition (EMT) was mediated by ΔNp63β in oral squamous cell carcinoma (OSCC). In this study, DNA microarray analyses were performed using ΔNp63β-overexpressing OSCC cells to identify genes associated with ΔNp63β-mediated EMT. Thereby, we focused on kallikrein-related peptidase (KLK) 6, most up-regulated following ΔNp63β-overexpression, that activates protease-activated receptors (PARs).
View Article and Find Full Text PDFWe previously revealed that epithelial-to-mesenchymal transition (EMT) was mediated by ΔNp63β, a splicing variant of ΔNp63, in oral squamous cell carcinoma (OSCC). Recent studies have highlighted the involvement of microRNA (miRNA) in EMT of cancer cells, though the mechanism remains unclear. To identify miRNAs responsible for ΔNp63β-mediated EMT, miRNA microarray analyses were performed by ΔNp63β-overexpression in OSCC cells; SQUU-B, which lacks ΔNp63 expression and displays EMT phenotypes.
View Article and Find Full Text PDFObjectives: We previously showed that ΔNp63β, a splicing variant of ΔNp63, mediated EMT and affected cell motility. DNA microarray was thus performed to elucidate the mechanism that ΔNp63β affects cell motility. As the results, Wnt5a was significantly down-regulated by ΔNp63β overexpression in tongue SCC cell line (SQUU-B) with EMT phenotype.
View Article and Find Full Text PDF